
1 | P a g e b i i z a y @ g m a i l . c o m

Unit 1 – Data Representation

Data Types
In computer science, a data type or simply type is a classification identifying one of various types
of data, such as real, integer or Boolean, that determines the possible values for that type; the
operations that can be done on values of that type; the meaning of the data; and the way values
of that type can be stored.

Data types are used within type systems, which offer various ways of defining, implementing and
using them. Common data types may include:

 Integers

 Booleans

 Characters

 Floating-point numbers

 Alphanumeric strings

The computer registers contain either data or control information. Data are numbers and other
binary-coded information that are operated on. Control information is a bit or group of bits used
to specify the sequence of command signals needed for data manipulation.

Possible data types in registers:

 Numbers used in computations

 Letters of the alphabet used in data processing

 Other discrete symbols used for specific purposes

Data Representation 5 Hrs.
Data Representation 1.5 Hrs.
Data Types
Number Systems
Alphanumeric Representation
Complements (r’s and r-1’s)

Fixed point Representation 1 Hr.
Integer Representation
Arithmetic Addition, Subtraction, and Overflows
Decimal Fixed point Representation

Floating point Representation 1 Hr.

Binary and Decimal Codes 1 Hr.
Gray, BCD, ASCII, Excess-3 Codes

Error Detection Code 0.5 Hr.
Parity bit, Parity checker and Parity generator

Downloaded from CSIT Tutor

2 | P a g e b i i z a y @ g m a i l . c o m

All types of data, except binary numbers, are represented in binary-coded form. Numbers are
represented by a string of digit symbols.

Based on number systems two basic data types are implemented in the computer system: fixed
point numbers and floating point numbers. Representing numbers in such data types is
commonly known as fixed point representation and floating point representation.

Number System
Number systems are used to describe the quantity of something or represent certain
information. Number of digits used in a number system is called its base or radix (r). We can
categorize number system as below:

Binary number system (r = 2)
Binary number system was introduced by an Indian- scholar Pingala in around 5th -2nd centuries
in BC. Long and short syllables were used by him to illustrate the two types of numbers, it is more
like Morse code. Gottfried Leibniz in 1679 introduced the modern type of binary number system
which we still use. The number system with only two digit 0 and 1 is known as binary number
system. Here, zero is represented by a symbol '0' and one is represented as '1'. Binary is another
way of saying base-2.

Binary number system has the base (or radix) 2 and the numbers in this system are formed with
two digits 1 & 0.

Figure: Representing binary number 1001101

EXAMPLE: Binary Number: (10101)2

Calculating Decimal Equivalent:

Downloaded from CSIT Tutor

3 | P a g e b i i z a y @ g m a i l . c o m

Table: The Binary counting sequence

Octal Number System (r = 8)
The octal numeral system, or “oct” for short, is the base-8 number system, and uses the digits 0
to 7. When we count up one from the 7, we need a new placement to represent what we call 8
since an 8 doesn't exist in Octal. So, after 7 it is 10.

Figure: Representing octal number 3623

EXAMPLE: Octal Number: (12570)8

Calculating Decimal Equivalent:

Downloaded from CSIT Tutor

4 | P a g e b i i z a y @ g m a i l . c o m

Hexadecimal Number system (r = 16)
The hexadecimal system is base-16. As its base implies, this number system uses sixteen symbols
to represent numbers. So, in hexadecimal, the total list of symbols to use is 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, D, E, and F.

Figure: Representing hexadecimal number 2DB7

EXAMPLE: Hexadecimal Number: (19FDE)16

Calculating Decimal Equivalent:

Decimal Number System (r = 10)
The number system that we use in our day-to-day life is the decimal number system. The word
decimal comes from “decem”, the Latin word for ten. The decimal number system (also called
base-10 or occasionally denary) has 10 as its base. Any number, from huge quantities to tiny
fractions, can be written in the decimal system using only the ten basic symbols 1, 2, 3, 4, 5, 6, 7,
8, 9, and 0.

Values are represented by the digits and their positions in the number and the type of number
system is called Positional Number System. In decimal number system, the successive positions
to the left of the decimal point represents: units, tens, hundreds, thousands and so on.

Each position represents a specific power of the base (10). For example, the decimal number
1234 consists of the digit 4 in the units position, 3 in the tens position, 2 in the hundreds position,
and 1 in the thousands position, and its value can be written as:

Downloaded from CSIT Tutor

5 | P a g e b i i z a y @ g m a i l . c o m

= (1x1000) + (2x100) + (3x10) + (4x1)
= (1x103) + (2x102) + (3x101) + (4x100)
= 1000 + 200 + 30 + 1
= (1234)10

Number System Conversion

Decimal to Other Base System
Steps:

Step 1 - Divide the decimal number to be converted by the value of the new base.
Step 2 - Get the remainder from Step 1 as the rightmost digit (least significant digit) of new base
number.
Step 3 - Divide the quotient of the previous divide by the new base.
Step 4 - Record the remainder from Step 3 as the next digit (to the left) of the new base number.

Repeat Steps 3 and 4, getting remainders from right to left, until the quotient becomes zero in
Step 3.

The last remainder thus obtained will be the most significant digit (MSD) of the new base
number.

Example: Decimal Number: (29)10

Calculating Binary Equivalent:

As mentioned in Steps 2 and 4, the remainders have to be arranged in the reverse order so that
the first remainder becomes the least significant digit (LSD) and the last remainder becomes the
most significant digit (MSD).

Decimal Number: (29)10 = Binary Number: (11101)2

Downloaded from CSIT Tutor

6 | P a g e b i i z a y @ g m a i l . c o m

Example: Conversion of Decimal (41.6875)10 to Binary

Other base system to Decimal System
Steps:

Step 1 - Determine the column (positional) value of each digit (this depends on the position of the
digit and the base of the number system).
Step 2 - Multiply the obtained column values (in Step 1) by the digits in the corresponding
columns.
Step 3 - Sum the products calculated in Step 2. The total is the equivalent value in decimal.

Example: Binary Number: (11101)2

Calculating Decimal Equivalent:

Binary Number: (11101)2 = Decimal Number: (29)10

Other Base System to Non-Decimal System
Steps:

Step 1 - Convert the original number to a decimal number (base 10).
Step 2 - Convert the decimal number so obtained to the new base number.

Example: Octal Number: (25)8

Downloaded from CSIT Tutor

7 | P a g e b i i z a y @ g m a i l . c o m

Calculating Binary Equivalent:

STEP 1: CONVERT TO DECIMAL

Octal Number: (25)8 = Decimal Number: (21)10

STEP 2: CONVERT DECIMAL TO BINARY

Decimal Number: (21)10 = Binary Number: (10101)2

Octal Number: (25)8 = Binary Number: (10101)2

Shortcut method - Binary to Octal
Steps:

Step 1 - Divide the binary digits into groups of three (starting from the right).
Step 2 - Convert each group of three binary digits to one octal digit.

Example: Binary Number: (10101)2

Calculating Octal Equivalent:

Binary Number: (10101)2 = Octal Number: (25)8

Downloaded from CSIT Tutor

8 | P a g e b i i z a y @ g m a i l . c o m

Shortcut method - Octal to Binary
Steps:

Step 1 - Convert each octal digit to a 3 digit binary number (the octal digits may be treated as
decimal for this conversion).
Step 2 - Combine all the resulting binary groups (of 3 digits each) into a single binary number.

Example: Octal Number: (25)8

Calculating Binary Equivalent:

Octal Number: (25)8 = Binary Number: (10101)2

Shortcut method - Binary to Hexadecimal
Steps:

Step 1 - Divide the binary digits into groups of four (starting from the right).
Step 2 - Convert each group of four binary digits to one hexadecimal symbol.

Example: Binary Number: (10101)2

Calculating hexadecimal Equivalent:

Binary Number: (10101)2 = Hexadecimal Number: (15)16

Shortcut method - Hexadecimal to Binary
Steps:

Step 1 - Convert each hexadecimal digit to a 4 digit binary number (the hexadecimal digits may be
treated as decimal for this conversion).
Step 2 - Combine all the resulting binary groups (of 4 digits each) into a single binary number.

Example: Hexadecimal Number: (15)16

Downloaded from CSIT Tutor

9 | P a g e b i i z a y @ g m a i l . c o m

Calculating Binary Equivalent:

Hexadecimal Number: (15)16 = Binary Number: (10101)2

Complements
Complements are used in the digital computers in order to simplify the subtraction operation and
for the logical manipulations. For each radix-r system (radix r represent base of number system)
there are two types of complements:

R's Complement
The radix complement is referred to as the r's complement. R's complement of a number N is
defined as rn –N
Where, N is the given number

 r is the base of number system
 n is the number of digits in the given number

To get the R's complement fast, add 1 to the low-order digit of its (R-1)'s complement

Example:

 10's complement

 2's complement

2's complement
The 2's complement of binary number is obtained by adding 1 to the Least Significant Bit (LSB) of
1's complement of the number. 2's complement = 1's complement + 1.

Example of 2's Complement is as follows:

Downloaded from CSIT Tutor

10 | P a g e b i i z a y @ g m a i l . c o m

Example 1:
Using 2’s complement, subtract 1010100 – 1000011
 X – Y

 X = 1010100
 2’s complement of Y = + 0111101
 Sum = 10010001
 Discard end carry 27 = - 10000000
 Answer: X - Y = 0010001

Example 2:
Using 2’s complement, subtract 1000011 – 1010100
 Y – X

 Y = 1000011
 2’s complement of X = +0101100
 Sum = 1101111

 No end carry
Answer: Y – X - (2’s complement of 1101111) = -0010001

10’s complement
We have to add 1 with the 9’s complement of any number to obtain the desired 10's complement
of that number. Or, if we want to find out the 10's complement directly, we can do it by following
the following formula, (10n - number), where n = number of digits in the number. An example is
given below to illustrate the concept of obtaining 10’s complement.

Example:
The 10’s complement of 546700 is 1000000 – 546700 = 453300

The 10’s complement of 12389 is 100000 - 12389 = 87611

Downloaded from CSIT Tutor

11 | P a g e b i i z a y @ g m a i l . c o m

Other Examples:
The 10’s complement of decimal 2389 = (104 –1) – 2389 + 1 = 7611.
The 10’s complement of decimal 012389 = (106 –1) – 012389 + 1 = 987602
The 10’s complement of decimal 246700 = (106 –1) – 246700 + 1 = 753300

Example 1:
Using 10’s complement, subtract 72532 – 3250
 M – N

 M = 72532
 10’s complement of N = +96750 (99999 – 03250) + 1
 Sum = 169282
 Discard end carry 105 = -100000
 Answer: = 69282

Example 2:
Using 10’s complement, subtract 3250 – 72532
 M – N

 M = 03250
 10’s complement of N = +27468 (99999 – 72532) + 1
 Sum = 30718
 No end carry
 Answer: - (10’s complement of 30718) = - 69282

(R-1)'s Complement
The diminished radix complement is referred to as the (r-1)'s complement. (R-1)'s complement of
a number N is defined as (rn -1) – N.
Where, N is the given number

r is the base of number system
n is the number of digits in the given number

To get the (R-1)'s complement fast, subtract each digit of a number from (R-1)

Example:

 9's complement

 1's complement

1's complement
The 1's complement of a number is found by changing all 1's to 0's and all 0's to 1's. This is called
as taking complement or 1's complement. Example of 1's Complement is as follows:

Downloaded from CSIT Tutor

12 | P a g e b i i z a y @ g m a i l . c o m

Other Examples:
The 1’s complement of 1011000 is 0100111
The 1’s complement of 0101101 is 1010010

Example 1:
Using 1’s complement, subtract X – Y = 1010100 – 1000011
 X = 1010100
 1’s complement of Y = + 0111100 (+1 End-around carry)
 Sum = 10010000
 + 1
 Answer: X - Y = 0010001

Example 2:
Using 1’s complement, subtract Y – X 1000011 – 1010100
 Y = 1000011
 1’s complement of X = + 0101011
 Sum = 1101110

 No end carry
Answer: Y – X - (1’s complement of 1101110) = -0010001

9’s complement
To obtain the 9’s complement of any number we have to subtract the number with (10n - 1)
where n = number of digits in the number, or in a simpler manner we have to divide each digit of
the given decimal number with 9.

Example: The 9’s complement of 546700 is 999999 - 546700= 453299

Downloaded from CSIT Tutor

13 | P a g e b i i z a y @ g m a i l . c o m

Example: The 9’s complement of 12389 is 99999 - 12389 = 87610

Other Examples:
- The 9’s complement of 546700 is 999999 – 546700 = 453299
- The 9’s complement of 012398 is 999999 – 012398 = 987601

9's complement subtraction:

Example 1:
A = 215
B = 155
We want to find out A-B by 9's complement subtraction method. First we have to find out 9’s
complement of B.

 999
-155
 844

Now we have to add 9’s complement of B to A

215
 +844
 1059

The left most bit of the result is called carry and is added back to the part of the result without it

059
 +1
 060

This is the final answer.

Example 2:
A = 4567
B = 1234
We need to find out A – B. 9's complement of B is

Downloaded from CSIT Tutor

14 | P a g e b i i z a y @ g m a i l . c o m

9999
 -1234

8765

Adding 9's complement of B with A, we get

4567
 +8765
 13332

Adding the carry with the result we get

3332
 +1
 3333

Now the answer is – (3333), because if there is no carry the answer will be – (9’s complement of
the answer).

Fixed point representations
Fixed point representation is a method of storing numbers in binary format. Fixed point refers to
a method of representing numbers with a fractional part on an ALU that only handles integer
operations.

Integer Representation
Integers are whole numbers or fixed-point numbers with the radix point fixed after the least-
significant bit. They are contrast to real numbers or floating-point numbers, where the position of
the radix point varies. It is important to take note that integers and floating-point numbers are
treated differently in computers.

Computers use a fixed number of bits to represent an integer. The commonly-used bit-lengths for
integers are 8-bit, 16-bit, 32-bit or 64-bit. Besides bit-lengths, there are two representation
schemes for integers:

1. Unsigned Integers: can represent zero and positive integers.
2. Signed Integers: can represent zero, positive and negative integers. Three representation

schemes had been proposed for signed integers:
a. Sign-Magnitude representation
b. 1's Complement representation
c. 2's Complement representation

Advantages and Disadvantages of unsigned notation
Advantages:

 One representation of zero

 Simple addition

Downloaded from CSIT Tutor

15 | P a g e b i i z a y @ g m a i l . c o m

Disadvantages

 Negative numbers cannot be represented.

 The need of different notation to represent negative numbers.

In all the above three schemes, the most-significant bit (MSB) is called the sign bit. The sign bit is
used to represent the sign of the integer - with 0 for positive integers and 1 for negative integers.
The magnitude of the integer, however, is interpreted differently in different schemes.

Sign-Magnitude Representation

 sign bit is 0 for positive, 1 for negative

 magnitude part = absolute value of number

 2 representations for 0. (0000 and 1000)

Example 1: Suppose that n=8 and the binary representation is (0 100 0001)2.
 Sign bit is 0 ⇒ positive
 Absolute value is (100 0001)2 = (65)10
 Hence, the integer is +(65)10

Example 2: Suppose that n=8 and the binary representation is (1 000 0001)2.
 Sign bit is 1 ⇒ negative
 Absolute value is (000 0001)2 = (1)10
 Hence, the integer is –(1)10

Example 3: Suppose that n=8 and the binary representation is (0 000 0000)2.
 Sign bit is 0 ⇒ positive
 Absolute value is (000 0000)2 = (0)10
 Hence, the integer is +(0)10

Downloaded from CSIT Tutor

16 | P a g e b i i z a y @ g m a i l . c o m

Example 4: Suppose that n=8 and the binary representation is (1 000 0000)2.
 Sign bit is 1 ⇒ negative
 Absolute value is (000 0000)2 = (0)10
 Hence, the integer is –(0)10

The drawbacks of sign-magnitude representation are:

 Addition and subtractions are difficult.

 Signs and magnitude, both have to carry out the required operation.

 There are two representations and for the number zero, which could lead to inefficiency
and confusion.
(0000 0000)2 = +010
(1000 0000)2 = -010

 Positive and negative integers need to be processed separately.

1’s complement Representation

 sign bit (MSB) is 1 for negative, 0 for positive

 negation is complement, e.g. 5 = 0101, -5 = 1010

 two representations for 0: 1111 and 0000

Example 1: Suppose that n=8 and the binary representation (0 100 0001)2.
 Sign bit is 0 ⇒ positive
 Absolute value is (100 0001)2 = (65)10
 Hence, the integer is +(65)10

Example 2: Suppose that n=8 and the binary representation (1 000 0001)2.
 Sign bit is 1 ⇒ negative
 Absolute value is the complement of (000 0001)2, i.e., (111 1110)2 = (126)10
 Hence, the integer is –(126)10

Downloaded from CSIT Tutor

17 | P a g e b i i z a y @ g m a i l . c o m

Example 3: Suppose that n=8 and the binary representation (0 000 0000)2.
 Sign bit is 0 ⇒ positive
 Absolute value is (000 0000)2 = (0)10
 Hence, the integer is +(0)10

Example 4: Suppose that n=8 and the binary representation (1 111 1111)2.
 Sign bit is 1 ⇒ negative
 Absolute value is the complement of (111 1111)2, i.e., (000 0000)2 = (0)10
 Hence, the integer is -(0)10

Again, the drawbacks are:

 There are two representations for zero.
(0000 0000)2 = +010
(1111 1111)2 = -010

 The positive integers and negative integers need to be processed separately.

2’s complement Representation

 sign bit (MSB) is 1 for negative, 0 for positive

 add 1 to 2's complement negative numbers

 only one representation for 0

 negation is complement + 1, e.g. 5 = 0101, -5 = 1010 + 1 = 1011

Example 1: Suppose that n=8 and the binary representation (0 100 0001)2.
 Sign bit is 0 ⇒ positive
 Absolute value is (100 0001)2 = (65)10
 Hence, the integer is +(65)10

Example 2: Suppose that n=8 and the binary representation (1 000 0001)2.
 Sign bit is 1 ⇒ negative
 Absolute value is the complement of (000 0001)2 plus 1, i.e., (111 1110)2 + (1)2 =

(127)10
 Hence, the integer is -(127)10

Example 3: Suppose that n=8 and the binary representation (0 000 0000)2.
 Sign bit is 0 ⇒ positive
 Absolute value is (000 0000)2 = (0)10
 Hence, the integer is +(0)10

Example 4: Suppose that n=8 and the binary representation (1 111 1111)2.
 Sign bit is 1 ⇒ negative
 Absolute value is the complement of (111 1111)2 plus 1, i.e., (000 0000)2 + (1)2 = (1)10
 Hence, the integer is -(1)10

Downloaded from CSIT Tutor

18 | P a g e b i i z a y @ g m a i l . c o m

Arithmetic Addition and Subtraction of Signed Numbers

Arithmetic Addition

 The addition of 2 numbers in the signed-magnitude system follows the rules of ordinary
arithmetic.

 Compare their signs, if the signs are the same, we add the two magnitudes and give the
sum the common sign. Look for Overflow.

 If the signs are different, we subtract the smaller magnitudes from the larger and give the
result the sign of the larger magnitude.

 Negative numbers must be in 2’s complement and that the sum obtained after the
addition if negative is in 2’s-complement form.

Downloaded from CSIT Tutor

19 | P a g e b i i z a y @ g m a i l . c o m

In each of the 4 cases, the operation performed is always addition, including the sign-bits. Any
carry out of the sign bit is discarded and negative results are automatically in 2's complement
form.

Arithmetic Subtraction
Take the 2’s complement of the subtrahend (including the sign bit) and add it to the minuend
(including the sign bit). A carry out of the sign-bit position is discarded.

Example:
(-6) - (-13) = +7, in binary with 8-bits this is written as:

-6 → 11111010

Downloaded from CSIT Tutor

20 | P a g e b i i z a y @ g m a i l . c o m

-13 → 11110011 (2's complement form)

Subtraction is changed to addition by taking 2's complement of the subtrahend (-13) to give
(+13).

-6 → 11111010
+13 → 00001101
+7 → 100000111 (discarding end carry).

Overflow
When two numbers of n digits are added and the sum occupies n+1 digits, we say that an
overflow has occurred. A result that contains n+1 bits can't be accommodated in a resister with a
standard length of n-bits. For this reason many computers detect the occurrence of an overflow
setting corresponding flip-flop. An overflow may occur if two numbers added are both positive or
both negative.

Example: Two signed binary numbers +70 and +80 are stored in two 8-bit resisters.

Since the sum of numbers 150 exceeds the capacity of the resister (since 8-bit resister can store
values ranging from +127 to -128), hence the overflow.

Overflow Detection
An overflow condition can be detected by observing two carries: carry into the sign bit position
and carry out of the sign bit position. Consider example of above 8-bit resister, if we take the
carry out of the sign bit position as a sign bit of the result, 9-bit answer so obtained will be
correct. Since answer cannot be accommodated within 8-bits, we say that an overflow occurred.

If these two carries are equal ==> no overflow
If these two carries are not same ==> overflow condition is produced.

If two carries are applied to an exclusive-OR gate, an overflow will be detected when output of
the gate is equal to 1.

Decimal Fixed-Point Representation
Decimal number representation = f (binary code used to represent each decimal digit). Output of
this function is called the Binary coded Decimal (BCD). A 4-bit decimal code requires 4 flip-flops
for each decimal digit.

Example: 4385 = (0100 0011 1000 0101)BCD

Disadvantages of BCD representation:

Downloaded from CSIT Tutor

21 | P a g e b i i z a y @ g m a i l . c o m

 wastage of memory

 Circuits for decimal arithmetic are quite complex.

Advantages of BCD representation:

 Eliminate the need for conversion to binary and back to decimal. (since applications like
Business data processing requires less computation than I/O of decimal data, hence
electronic calculators perform arithmetic operations directly with the decimal data (in
binary code))

For the representation of signed decimal numbers in BCD, sign is also represented with 4-bits,
plus with 4 0's and minus with 1001 (BCD equivalent of 9). Negative numbers are in 10's
complement form.

Consider the Addition: (+375) + (-240) = +135 [0→positive, 9→negative in case of radix 10]

To obtain the 10’s complement of a BCD number, first take the 9’s complement and then add one
to the least significant digit.

Limitation of Fixed-Point Representation
To represent large numbers or very small numbers we need a very long sequences of bits. This is
because we have to give bits to both the integer part and the fraction part.

Floating Point Representation
A floating-point number (or real number) can represent a very large (1.23×1088) or a very small
(1.23×10-88) value. It could also represent very large negative number (-1.23×1088) and very small
negative number (-1.23×1088), as well as zero, as illustrated:

In the decimal system there are 2 ways of floating point representation: Scientific Notation and
Floating point notation.

A floating-point number is typically expressed in the scientific notation, with a fraction (F), and an
exponent (E) of a certain radix (r), in the form of F × rE. Decimal numbers use radix of 10 (F × 10E);
while binary numbers use radix of 2 (F × 2E).

Downloaded from CSIT Tutor

22 | P a g e b i i z a y @ g m a i l . c o m

Representation of floating point number is not unique. For example, the number 55.66 can be
represented as 5.566×101, 0.5566×102, 0.05566×103, and so on. The fractional part can be
normalized. In the normalized form, there is only a single non-zero digit before the radix point.
For example, decimal number 123.4567 can be normalized as 1.234567×102; binary number
(1010.1011)2 can be normalized as (1.011011)2×23.

Example:

Scientific notation Floating point notation
1,245,000,000,000 = 1.245×1012 0.1245×1013
0.00001245 = 1.245×10-5 0.1245×10-4
-0.00001245 = -1.245×10-5 -0.1245×10-4

Thus, there are three parts in the floating-point representation:
a. The sign bit (S) is self-explanatory (0 for positive numbers and 1 for negative numbers).
b. For the exponent (E), a so-called bias (or excess) is applied so as to represent both

positive and negative exponent. The bias is set at half of the range. For single precision
with an 8-bit exponent, the bias is 127 (or excess-127). For double precision with a 11-bit
exponent, the bias is 1023 (or excess-1023).

c. The fraction (F) (also called the mantissa or significand) is composed of an implicit leading
bit (before the radix point) and the fractional bits (after the radix point). The leading bit
for normalized numbers is 1; while the leading bit for denormalized numbers is 0.

Suppose we use 16 bit words

Downloaded from CSIT Tutor

23 | P a g e b i i z a y @ g m a i l . c o m

It is important to note that floating-point numbers suffer from loss of precision when represented
with a fixed number of bits (e.g., 32-bit or 64-bit). This is because there are infinite number of
real numbers (even within a small range of says 0.0 to 0.1).

It is also important to note that floating number arithmetic is very much less efficient than
integer arithmetic. It could be speed up with a so-called dedicated floating-point co-processor.
Hence, use integers if your application does not require floating-point numbers.

In computers, floating-point numbers are represented in scientific notation of fraction (F) and
exponent (E) with a radix of 2, in the form of F×2E. Both E and F can be positive as well as
negative.

Note:
In Floating Point Number representation, only Mantissa (M) and Exponent (E) are explicitly
represented. The Radix (R) and the position of the Radix Point are implied.

Example
A binary number +1001.11 in 16-bit floating point number representation (6-bit exponent and 10-
bit fractional mantissa):

 0 0 00100 100111000

Sign Exponent Mantissa

or 0 0 00101 010011100

Normalization
A floating-point number is said to be normalized if the most significant digit of the mantissa is
nonzero. For example, decimal number 350 is normalized but 00035 is not. The 8-bit number
00011010 is not normalized. Normalize it by fraction = 11010000 and exponent = -3

Representation of Zero
 - Zero
 Mantissa = 0

 - Real Zero
 Mantissa = 0
 Exponent = smallest representable number which is represented as 00 ... 0

Binary and Decimal Codes
Internally, digital computers operate on binary numbers. When interfacing to humans, digital
processors, e.g. pocket calculators, communication is decimal-based. Input is done in decimal
then converted to binary for internal processing. For output, the result has to be converted from
its internal binary representation to a decimal form.

Downloaded from CSIT Tutor

24 | P a g e b i i z a y @ g m a i l . c o m

To be handled by digital processors, the decimal input (output) must be coded in binary in a digit
by digit manner. For example, to input the decimal number 957, each digit of the number is
individually coded and the number is stored as 100101010111. Thus, we need a specific code for
each of the 10 decimal digits. There is a variety of such codes, such as:

1. Weighted codes
2. Non-Weighted codes
3. Self-Complementing codes
4. Reflective codes
5. Alphanumeric codes
6. Error detecting and correcting codes

1. Weighted Codes
Weighted binary codes are those binary codes which obey the positional weight principle. Each
position of the number represents a specific weight. Several systems of the codes are used to
express the decimal digits 0 through 9. In these codes each decimal digit is represented by a
group of four bits.

Each bit has a positional value of 8, 4, 2 or 1 in binary codes. Examples are: 8421, 2421, 3321,
4221, 5211, 5311, 5421, 6311, 7421, 742’1’, 842’1’. All the above codes are used to represent a
given decimal digit into four bit binary word.

Decimal
Number

8421 2421 3321 4221 5311 5421 6311 7421 742’1’ 842’1’

0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

1 0001 0001 0001 0001 0001 0001 0001 0001 0111 0111

2 0010 0010 0010 0010 0011 0010 0011 0010 0110 0110

3 0011 0011 0011 0011 0100 0011 0100 0011 0101 0101

4 0100 0100 0101 1000 0101 0100 0101 0100 0100 0100

5 0101 1011 0110 0111 1000 0101 0111 0101 1010 1011

6 0110 1100 0111 1100 1001 0110 1000 0110 1001 1010

7 0111 1101 1101 1101 1010 0111 1001 0111 1000 1001

8 1000 1110 1110 1110 1100 1011 1011 1001 1111 1000

9 1001 1111 1111 1111 1101 1100 1100 1010 1110 1111

Downloaded from CSIT Tutor

25 | P a g e b i i z a y @ g m a i l . c o m

2. Non-Weighted Codes:
Each bit has no positional value
 1. Excess-3 code

 2. Gray code
 3. Five bit BCD

3. Self-Complementing codes or Reflective codes
Code for one digit will be the complement of other
 1. 2421
 2. 5211
 3. Excess-3

4. Sequential Codes
Succeeding number is one more than the previous one
 1. 8421
 2. Excess-3

5. Alphanumeric codes
 1. American Standard Code for Information Interchange (ASCII)
 2. Extended Binary Coded Decimal Interchange Code (EBCDIC)
 3. Hollerith Code
 4. Five bit Baudot Code
 5. Morse Code

6. Error Detection and Correction Codes
For reliable transmission and storage of digital data, error detection and correction is required.
Examples of codes which permit error detection and error correction are: Parity Codes, Hamming
Code, etc.

Gray Code:
It is the non-weighted code and it is not arithmetic codes. That means there are no specific
weights assigned to the bit position. It has a very special feature that has only one bit will change,
each time the decimal number is incremented as shown in fig. As only one bit changes at a time,
the gray code is called as a unit distance code. The gray code is a cyclic code. Gray code cannot be
used for arithmetic operation.

Downloaded from CSIT Tutor

26 | P a g e b i i z a y @ g m a i l . c o m

The Gray code consists of sixteen 4-bit code words to represent the decimal Numbers 0 to 15. For
Gray code, successive code words differ by only one bit from one to the next as shown in the
table above and further illustrated in the Figure below.

Application of Gray Code

 Gray code is popularly used in the shaft position encoders.

 A shaft position encoder produces a code word which represents the angular position of
the shaft.

BCD Code:
One commonly used code is the Binary Coded Decimal (BCD) also known as packet decimal code
which corresponds to the first 10 binary representations of the decimal digits 0-9. The BCD code
requires 4 bits to represent the 10 decimal digits. In the BCD, with four bits we can represent
sixteen numbers (0000 to 1111). But in BCD code only first ten of these are used (0000 to 1001).
A total of 6 combinations will be unused. The position weights of the BCD code are 8, 4, 2, 1.

Group of 4 binary bits is a nibble. A nibble representing a number greater than 9 is invalid BCD.
The remaining six code combinations i.e. 1010 to 1111 are invalid in BCD. Below is a list of the
decimal numbers 0 through 9 and the binary conversion.

Downloaded from CSIT Tutor

27 | P a g e b i i z a y @ g m a i l . c o m

The 8421 BCD code for 9.2 is 1001.0010.

BCD for 9.2

The 4221 BCD code for 9.2 is 1111.0010.
The 5421 BCD code for 9.2 is 1100.0010.

Note: The numbers 4, 2, 2, 1 in 4221 BCD and 5, 4, 2 and 1 in 5421 BCD represent weights of the
relevant bits.

Advantages of BCD Codes

 It is very similar to decimal system.

 We need to remember binary equivalent of decimal numbers 0 to 9 only, such as those
found in digital clocks or digital voltmeters.

Disadvantages of BCD Codes

 The addition and subtraction of BCD have different rules.

 The BCD arithmetic is little more complicated.

 BCD needs more number of bits than binary to represent the decimal number. So BCD is
less efficient than binary.

ASCII Code:
The American Standard-Code for Information Interchange (ASCII) pronounced "as-kee" is a 7-bit
code based on the ordering of the English alphabets. The ASCII codes are used to represent
alphanumeric data in computer input/output. It represents a total of 128 characters.

These include 95 printable characters including 26 upper-case letters (A to Z), 26 lowercase
letters (a to z), 10 numerals (0 to 9) and 33 special characters such as mathematical symbols,
space character etc. It also defines codes for 33 non-printing obsolete characters except for
carriage return and/or line feed. The below table lists the 7 bit ASCII code containing the 95
printable characters.

The format of ASCII code for each character is X6X5X4X3X2X1X0 where each X is 0 or 1. For instance,
letter D is coded as 1000100.

More examples are:
The ASCll-7 code for ‘d’ is 1100100 as seen from the table.
The ASCll-7 code for '+' is 0101011 as seen from the table.

An eight-bit version of the ASCII code, known as US ASCII-8 or ASCII-8, has also been developed.
Since it uses 8-bits, so this version of ASCII can represent a maximum of 256 characters.

Downloaded from CSIT Tutor

28 | P a g e b i i z a y @ g m a i l . c o m

Example 1: With an ASCII-7 keyboard, each keystroke produces the ASCII equivalent of the
designated character. Suppose that you type PRINT X. What is the output of an ASCII-7 keyboard?

Downloaded from CSIT Tutor

29 | P a g e b i i z a y @ g m a i l . c o m

Solution: The sequence is as follows:
The ASCII-7 equivalent of P = 101 0000
The ASCII-7 equivalent of R = 101 0010
The ASCII-7 equivalent of I = 1001010
The ASCII-7 equivalent of N = 100 1110
The ASCII-7 equivalent of T = 1-010100
The ASCII-7 equivalent of space = 010 0000
The ASCII-7 equivalent of X = 101 1000

So the output produced is 1010000101001010010101001110101010001000001011000. The
output in hexadecimal equivalent is 50 52 49 4E 54 30 58

Example2: A computer sends a message to another computer using an odd-parity bit. Here is the
message in ASCII-8 Code.
1011 0001
1011 0101
1010 0101
1010 0101
1010 1110
What do these numbers mean?

Solution
On translating, the 8-bit numbers into their equivalent ASCII-8 code we get the word 1011 0001
(Q), 10110101 (U), 10100101 (E), 1010 0101 (E), 1010 1110 (N)

So, on translation we get QUEEN as the output.

Excess-3 Code:
The Excess-3 code is also called as XS-3 code. It is non-weighted code used to express decimal
numbers. The Excess-3 code words are derived from the 8421 BCD code words adding (0011)2 or
(3)10 to each code word in 8421. The excess-3 codes are obtained as follows:

An Example: The code of a decimal 0 is 0011, that of 6 is 1001, etc. Some other are shown in table
below:

Downloaded from CSIT Tutor

30 | P a g e b i i z a y @ g m a i l . c o m

Advantages of Binary Code
Following is the list of advantages that binary code offers.

 Binary codes are suitable for the computer applications.

 Binary codes are suitable for the digital communications.

 Binary codes make the analysis and designing of digital circuits if we use the binary codes.

 Since only 0 & 1 are being used, implementation becomes easy.

Binary to BCD Conversion
Steps:

Step 1 -- Convert the binary number to decimal.
Step 2 -- Convert decimal number to BCD.

Example: convert (11101)2 to BCD.

Step 1 - Convert to Decimal
Binary Number: (11101)2

Calculating Decimal Equivalent:

Binary Number: (11101)2 = Decimal Number: (29)10

Downloaded from CSIT Tutor

31 | P a g e b i i z a y @ g m a i l . c o m

Step 2 - Convert to BCD

Decimal Number: (29)10

Calculating BCD Equivalent. Convert each digit into groups of four binary digits equivalent.

Result

BCD to Binary Conversion
Steps

Step 1 -- Convert the BCD number to decimal.
Step 2 -- Convert decimal to binary.

Example: convert (00101001)BCD to Binary.

STEP 1 - CONVERT TO BCD
BCD Number: (00101001)BCD

Calculating Decimal Equivalent. Convert each four digit into a group and get decimal equivalent
or each group.

BCD Number: (00101001)BCD = Decimal Number: (29)10

STEP 2 - CONVERT TO BINARY
Used long division method for decimal to binary conversion.

Decimal Number: (29)10

Calculating Binary Equivalent:

Downloaded from CSIT Tutor

32 | P a g e b i i z a y @ g m a i l . c o m

As mentioned in Steps 2 and 4, the remainders have to be arranged in the reverse order so that
the first remainder becomes the least significant digit (LSD) and the last remainder becomes the
most significant digit (MSD).

Decimal Number: (29)10 = Binary Number: (11101)2

Result

BCD to Excess-3
Steps

Step 1 -- Convert BCD to decimal.
Step 2 -- Add (3)10 to this decimal number.
Step 3 -- Convert into binary to get excess-3 code.

Example: convert (1001)BCD to Excess-3.

STEP 1 - CONVERT TO DECIMAL
(1001)BCD = (9)3

STEP 2 - ADD 3 TO DECIMAL
(9)10 + (3)10 = (12)10

STEP 3 - CONVERT TO EXCESS-3
(12)10 = (1100)2

Result

Excess-3 to BCD Conversion
Steps

Downloaded from CSIT Tutor

33 | P a g e b i i z a y @ g m a i l . c o m

Step 1 -- Subtract (0011)2 from each 4 bit of excess-3 digit to obtain the corresponding BCD code.

Example: convert (10011010)XS-3 to BCD.

Given XS-3 number = 1 0 0 1 1 0 1 0
Subtract (0011)2 = 0 0 1 1 0 0 1 1

 BCD = 0 1 1 0 0 1 1 1

Result

Error Detection and Correction Code
Error means a condition when output information is not same as input information. When
transmission of digital signals takes place between two systems such as a computer, the
transmitted signal is combined with the "Noise". The noise can introduce an error in the binary
bits travelling from one system to other. That means 0 may change to 1 or a 1 may change to 0.

Error Detecting Codes
Whenever a message is transmitted then there are changes that it get scrambled by noise or data
gets corrupted. When we add some additional data to a given digital message which can help us
to detect if an error occurred during transmission of the message then adding such data is called
an error-detecting code. A simple example of error-detecting code is parity check.

Error Correcting Codes
Along with Error detecting code, we can also pass some data which help to figure out the original
message from the corrupt message that we received. This type of code is called an error-
correcting code. Error correcting codes also deploys the same strategy as error detecting codes
but additionally, such codes also detects the exact location of corrupt bit. In error correcting
code, parity check has simple way to detect error along with a sophisticated mechanism to
determine the corrupt bit location. Once corrupt bit is located, its value is reverted (from 0 to 1 or
1 to 0) to get the original message.

Downloaded from CSIT Tutor

34 | P a g e b i i z a y @ g m a i l . c o m

How to detect and correct errors?
For the detection and correction of these errors, one or more than one extra bits are added to
the data bits at the time transmitting. These extra bits are called as parity bits. They allow
detection or correction of the errors. The data bits along with the parity bits form a code word.

Binary information may be transmitted through some communication medium, e.g. using wires
or wireless media. A corrupted bit will have its value changed from 0 to 1 or vice versa. To be able
to detect errors at the receiver end, the sender sends an extra bit (parity bit) with the original
binary message.

A parity bit is an extra bit included with the n-bit binary message to make the total number of 1’s
in this message (including the parity bit) either odd or even. If the parity bit makes the total
number of 1’s an odd (even) number, it is called odd (even) parity. The table shows the required
odd (even) parity for a 3-bit message.

Downloaded from CSIT Tutor

35 | P a g e b i i z a y @ g m a i l . c o m

At the receiver end, an error is detected if the message does not match have the proper parity
(odd/even). Parity bits can detect the occurrence 1, 3, 5 or any odd number of errors in the
transmitted message. No error is detectable if the transmitted message has 2 bits in error since
the total number of 1’s will remain even (or odd) as in the original message. In general, a
transmitted message with even number of errors cannot be detected by the parity bit.

Binary information may be transmitted through some communication medium, e.g. using wires
or wireless media. Noise in the transmission medium may cause the transmitted binary message
to be corrupted by changing a bit from 0 to 1 or vice versa. To be able to detect errors at the
receiver end, the sender sends an extra bit (parity bit).

How does error detection take place?
The parity checking at the receiver can detect the presence of an error if the parity of the receiver
signal is different from the expect parity. That means if is known that the parity of the
transmitted signal is always going to be "even" and if the received signal has an odd parity then
the receiver can conclude that the received signal is not correct. If presence of error is detected
then the receiver will ignore the received byte and request for retransmission of the same byte to
the transmitter.

Parity Generator
Parity generator and checker networks are logic circuits constructed with exclusive-OR functions.
Consider a 3-bit message to be transmitted with an odd parity bit. At the sending end, the odd
parity is generated by a parity generator circuit. The output of the parity checker would be 1
when an error occurs i.e. no. of 1’s in the four inputs is even.

P = x⊕y⊕z

Message (xyz) Parity bit (odd)

000 1

001 0

010 0

011 1

100 0

101 1

110 1

111 0

Downloaded from CSIT Tutor

36 | P a g e b i i z a y @ g m a i l . c o m

Parity Checker
Considers original message as well as parity bit

e = p⊕x⊕y⊕z

e= 1 => No. of 1’s in pxyz is even => Error in data
e= 0 => No. of 1’s in pxyz is odd => Data is error free

Circuit diagram for parity generator and parity checker is shown below. At the sending end, the
message is applied to a parity generator. The message, including the parity bit, is transmitted. At
the receiving end, all the incoming bits are applied to a parity checker. Any odd number of errors
are detected.

Figure: Error detection with odd parity bit

Parity generators and checkers are constructed with XOR gates (odd function). An odd function
generates 1 if an odd number of input variables are 1.

Book References:
(1) Andrew S. Tanenbaum, “Structured Computer Organization”, Fourth Edition.
(2) M. Morris Mano, “Computer System Architecture”, Pearson, 3rd Ed, 2004.
(3) M. Morris Mano, “Logic and Computer Design Fundamentals”, Pearson Education, 2nd Edition
(4) John P. Hayes, “Computer Architecture & Organization”.
(5) William Stalling, “Computer Organization & Architecture”.

Downloaded from CSIT Tutor

37 | P a g e b i i z a y @ g m a i l . c o m

Web References:
(6) http://en.wikipedia.org
(7) http://www.eda.kent.ac.uk/
(8) http://ecomputernotes.com/
(9) http://www.tutorialspoint.com/

Assignments:
(1) Why do 0 through 9 have ASCII values?
(2) (37)10 has 0010 0101 in signed magnitude notation. Find the signed magnitude of – (37)10?
(3) Using the signed magnitude notation find the 8-bit binary representation of the decimal value

(24)10 and – (24)10.
(4) Find the signed magnitude of – (63)10 using 8-bit binary sequence?
(5) Determine the decimal value represented by 10001011 in each of the following three

systems.

 Unsigned notation?

 Signed magnitude notation?

 Two’s complements?
(6) Use the ASCII table to write the ASCII code for the following:

 CIS110

 6 = 2*3
(7) Derive the circuit for a 3-bit parity generator and a 4-bit parity checker using even parity bit.
(8) Differentiate between parity checker and parity generator. (T.U. 2066)
(9) Explain the error detection code with example. (T.U. 2068)
(10) Explain the subtraction algorithm with signed 2’s compliment. (T.U. 2067)
(11) What is an error detection code? Explain with example. (T.U. 2070)
(12) Differentiate between fixed point representation and floating point representation. (T.U.

2069)
(13) Write short notes on:

 Alphanumeric Representation

 Parity Generator (T.U. 2069)

A Gentle Advice:
Please go through your text books and reference books for detail study!!! Thank you all.

Notes Compiled By:
Bijay Mishra
biizay.blogspot.com
9813911076 or 9841695609

Downloaded from CSIT Tutor

http://en.wikipedia.org/
http://www.eda.kent.ac.uk/
http://ecomputernotes.com/
http://www.tutorialspoint.com/

1 | P a g e b i i z a y @ g m a i l . c o m

Unit 2 – Micro-operations

Micro-operations
Micro-operations (also known as a micro-ops or μops) are the operations which are used to create
assembly language instruction. The operations performed on the data stored in registers are called
micro-operations. Some common example of micro-operation are:

1) Register Transfer Micro-operation: The main purpose of Register Transfer Micro operation is to
transfer binary information from register to another register.

2) Arithmetic Micro-operation: The main purpose of Arithmetic Micro-operation is to perform
arithmetic operation on numeric data.

3) Logical Operation: The main purpose of Logical Operation is to perform bit manipulation on
numeric data.

4) Shift Micro-operation: The main purpose of Shift Micro-operation is to shift the temporary data
which are present in register.

Micro-operations 7 Hrs.
Arithmetic Micro-operations 3 Hrs.
Add Micro-operation
Subtract Micro-operation
Binary Adder
Binary Subtractor
Binary Adder-Subtractor
Binary Incrementer
Arithmetic Circuit

Logic Micro-operations 1.5 Hrs.
Logic Micro-operations
Implementations and Applications

Shift Micro-operations 1.5 Hrs.
Logical Shift
Circular Shift
Arithmetic Shift
Combinational Circuit Shifter

Arithmetic Logic Shift Unit 1 Hr.

Downloaded from CSIT Tutor

2 | P a g e b i i z a y @ g m a i l . c o m

Register Transfer Micro-operation

Register transfer language is a symbolic language and a convenient tool for describing the internal
organization of digital computers. It can also be used to facilitate the design process of digital
systems.

Copying the contents of one register to another is a register transfer. Registers are designated by
capital letters, sometimes followed by numbers (E.g. R1, IR, MAR, etc.).

A register transfer is indicated as: R2 ← R1

The statement “R2 ← R1” denotes a transfer of the content of the R1 into resister R2.

A register transfer such as “R3 ← R5” implies that the digital system has:

 the data lines from the source register (R5) to the destination register (R3)

 Parallel load in the destination register (R3)

 Control lines to perform the action

Control Function
Often actions need to only occur if a certain condition is true. In digital systems, this is often done
via a control signal, called a control function.

Example: P: R2 ← R1 i.e. if (P = 1) then (R2 ← R1)
Which means “if P = 1, then load the contents of register R1 into register R2”.

If two or more operations are to occur simultaneously, they are separated with commas.

Example: P: R3 ← R5, MAR ← IR

Here, if the control function P = 1, load the contents of R5 into R3, and at the same time (clock),
load the contents of register IR into register MAR

Symbols Description Examples

Capital letters & numerals Denotes a register MAR, R2

Parentheses () Denotes a part of a register R2(0-7), R2(L)

Arrow ← Denotes transfer of information R2 ← R1

Colon : Denotes termination of control function P:

Comma , Separates two micro-operations A ← B, B ← A

Table: Basic symbols for register-transfer

Arithmetic Micro-operation
The basic arithmetic micro-operations are

 Addition

 Subtraction

 Increment

 Decrement

Downloaded from CSIT Tutor

3 | P a g e b i i z a y @ g m a i l . c o m

The additional arithmetic micro-operations are

 Add with carry

 Subtract with borrow

 Transfer/Load

Summary of Typical Arithmetic Micro-Operations:

R3 ← R1 + R2
R3 ← R1 - R2
R2 ← R2’
R2 ← R2’+ 1
R3 ← R1 + R2’+ 1
R1 ← R1 + 1
R1 ← R1 - 1

Contents of R1 plus R2 transferred to R3
Contents of R1 minus R2 transferred to R3
Complement the contents of R2 (1’s Complement)
2's complement the contents of R2 (Negate)
R1 plus 2's complement the contents of R2 (Subtraction)
Increment the content of R1 by 1
Decrement the content of R1 by 1

Binary Adder

Figure: 4-bit binary adder

To implement the add micro-operation with hardware, we need the resisters that hold the data
and the digital component that performs the arithmetic addition. The digital circuit that generates
the arithmetic sum of two binary numbers of any lengths is called Binary Adder.

The binary adder is constructed with the full-adder circuit connected in cascade, with the output
carry from one full-adder connected to the input carry of the next full-adder.

An n-bit binary adder requires n full-adders. The output carry from each full-adder is connected to
the input carry of the next-high-order-full-adder. Inputs A and B come from two registers R1 and
R2.

The subtraction A-B can be carried out by the following steps

 Take the 1’s complement of B (invert each bit)

 Get the 2’s complement by adding 1

 Add the result to A

FA

B0 A0

S0

C0FA

B1 A1

S1

C1FA

B2 A2

S2

C2FA

B3 A3

S3

C3

C4

Downloaded from CSIT Tutor

4 | P a g e b i i z a y @ g m a i l . c o m

Binary Adder-Subtractor

Figure: 4-bit adder-subtractor

The addition and subtraction operations can be combined into one common circuit by including an
exclusive-OR gate with each full-adder.

The mode input M controls the operation the operation. When M=0, the circuit is an adder and
when M=1 the circuit becomes a subtractor. Each exclusive-OR gate receives input M and one of
the inputs of B.

1. When M=0: B ⊕ M = B ⊕ 0 = B, i.e. full-adders receive the values of B, input carry is B and
circuit performs A+B.

2. When M=1: B ⊕ M = B ⊕ 1 = B' and C0= 1, i.e. B inputs are all complemented and 1 is
added through the input carry. The circuit performs A + (2's complement of B).

Binary Incrementer

Figure: 4-bit binary Incrementer

The increment micro-operation adds one to a number in a register. For example, if a 4-bit register
has a binary value 0110, it will go to 0111 after it is incremented. Increment micro-operation can be
done with a combinational circuit (half-adders connected in cascade) independent of a particular
register.

FA

B0 A0

S0

C0C1FA

B1 A1

S1

C2FA

B2 A2

S2

C3FA

B3 A3

S3C4

M

HA

x y

C S

A0 1

S0

HA

x y

C S

A1

S1

HA

x y

C S

A2

S2

HA

x y

C S

A3

S3C4

Downloaded from CSIT Tutor

5 | P a g e b i i z a y @ g m a i l . c o m

Arithmetic Circuit
The arithmetic micro-operations can be implemented in one composite arithmetic circuit. By
controlling the data inputs to the adder (basic component of an arithmetic circuit), it is possible to
obtain different types of arithmetic operations. In the circuit below contains:

 4 full-adders

 4 multiplexers (controlled by selection inputs S0 and S1)

 Two 4-bit inputs A and B and a 4-bit output D

 Input carry cin goes to the carry input of the full-adder.

Output of the binary adder is calculated from the arithmetic sum: D = A + Y + cin

By controlling the value of Y with the two selection inputs S1 & S0 and making cin= 0 or 1, it is
possible to generate the 8 arithmetic micro-operations listed in the table below:

Table: Arithmetic Circuit Function Table

When S1S0 = 00, the value of B is applied to the Y inputs of the adder. If Cin = 0, the output D = A + B.
If Cin = 1, output D = A + B + 1. Both cases perform the add micro-operation with or without adding
the input carry.

When S1S0 = 01, the complement of B is applied to the Y inputs of the adder. If Cin = 1, then D =A
+B’+ 1. This produces A plus the 2’s complement of B, which is equivalent to a subtract with
borrow, that is, A – B – 1.

Downloaded from CSIT Tutor

6 | P a g e b i i z a y @ g m a i l . c o m

Figure: 4-bit Arithmetic Circuit

Downloaded from CSIT Tutor

7 | P a g e b i i z a y @ g m a i l . c o m

When S1S0 = 10, the input from B are neglected, and instead, all 0’s are inserted into the Y inputs.
The output becomes D = A + 0 + Cin. This gives D = A when Cin = 0 and D = A +1 when Cin = 1. In the
first case we have a direct transfer from input A to output D. In the second case, the value of A is
incremented by 1.

When S1S0 = 11, all 1’s are inserted into the Y inputs of the adder to produce the decrement
operation D = A –1 when Cin. This is because a number with all 1’s is equal to the 2’s complement of
1 (the 2’s complement of binary 0001 is 1111). Adding a number A to the 2’s complement of 1
produces F = A +2’s complement of 1 = A – 1. When Cin = 1, then D = A – 1 + 1 = A, which causes a
direct transfer from input A to output D. Note that the micro-operation D = A is generated twice, so
there are only seven distinct micro-operations in the arithmetic circuit.

Logic Micro-operation
Logic operations specify binary operations for strings of bits stored in registers and treat each bit
separately. Logic micro-operations are bit-wise operations, i.e., they work on the individual bits of
data. They are useful for bit manipulations on binary data and for making logical decisions based on
the bit value.

Example: The XOR of R1 and R2 is symbolized by P: R1 ← R1 ⊕ R2

Example: R1 = 1010 and R2 = 1100
1010 Content of R1
1100 Content of R2
0110 Content of R1 after P = 1

Symbols used for logical micro-operations:

1. OR: ∨
2. AND: ∧
3. XOR: ⊕

The + sign has two different meanings: logical OR and Summation

• When + is in a micro-operation, then summation
• When + is in a control function, then OR

Example: P + Q: R1 ← R2 + R3, R4 ← R5 ∨ R6

There are 16 different logic operations that can be performed with two binary variables

Downloaded from CSIT Tutor

8 | P a g e b i i z a y @ g m a i l . c o m

Table: Sixteen Logic Micro-operations

Hardware Implementations and Applications
The hardware implementation of logic micro-operations requires that logic gates be inserted for
each bit or pair of bits in the registers to perform the required logic function. Although there are 16
logic micro-operations, most computers use only four --- AND, OR, XOR (exclusive-OR), and
complement by which all others can be derived.

Figure below shows one stage of a circuit that generates the four basic logic micro-operations. It
consists of four gates and a multiplexer. Each of the four logic operations is generated through a
gate that performs the required logic. The outputs of the gates are applied to the data inputs of the
multiplexer. The two selection inputs S1 and S0 choose one of the data inputs of the multiplexer and
direct its value to the output.

The diagram shows one typical stage with subscript i. For a logic circuit with n bits, the diagram
must be repeated n times for i = 0, 1, 2, …, N–1. The selection variables are applied to all stages.
The function table lists the logic micro-operations obtained for each combination of the selection
variables.

Downloaded from CSIT Tutor

9 | P a g e b i i z a y @ g m a i l . c o m

Figure: One stage of Logic Circuit

Logic micro operations are very useful for manipulating individual bits or a portion of a word stored
in a register. They can be used to change bit values, delete a group of bits, or insert new bit values
into a register. The following examples show how the bits of one register (designated by A) are
manipulated by logic micro-operations as a function of the bits of another register (designated by
B). In a typical application, register A is a processor register and the bits of register B constitute a
logic operand extracted from memory and placed in register B.

The selective-set operation sets to 1 the bits in A where there are corresponding 1’s in B

1010 A before
1100 B (logic operand)
1110 A after

A ← A ∨ B

The selective-complement operation complements bits in A where there are corresponding 1’s in
B

1010 A before
1100 B (logic operand)
0110 A after

A ← A ⊕ B

The selective-clear operation clears to 0 the bits in A only where there are corresponding 1’s in B

1010 A before
1100 B (logic operand)
0010 A after

A ← A ∧ B

Downloaded from CSIT Tutor

10 | P a g e b i i z a y @ g m a i l . c o m

The mask operation is similar to the selective-clear operation, except that the bits of A are cleared
only where there are corresponding 0’s in B

1010 A before
1100 B (logic operand)
1000 A after

A ← A ∧ B

The insert operation inserts a new value into a group of bits. This is done by first masking the bits
to be replaced and then Oring them with the bits to be inserted.

0110 1010 A before
0000 1111 B (mask)
0000 1010 A after masking

0000 1010 A before
1001 0000 B (insert)
1001 1010 A after insertion

The clear operation compares the bits in A and B and produces an all 0’s result if the two number
are equal

1010 A
1010 B
0000 A ← A ⊕ B

Shift Micro-operation
Shift micro-operations are used for serial transfer of data. They are also used in conjunction with
arithmetic, logic, and other data-processing operations.

There are three types of shifts

1. Logical shift
2. Circular shift
3. Arithmetic shift

Figure: Shift Micro-operations

Downloaded from CSIT Tutor

11 | P a g e b i i z a y @ g m a i l . c o m

Figure: Right Shift Operation and Left Shift Operation

Logical Shift
A logical shift is one that transfers 0 through the serial input. The symbols shl and shr are for logical
shift-left and shift-right by one position respectively.

Example:
R1 ← shl R1
R2 ← shr R2

Circular Shift
The circular shift (aka rotate) circulates the bits of the register around the two ends without loss of
information. The symbols cil and cir are for circular shift left and right respectively.

Examples:
R2 ← cir R2
R3 ← cil R3

Downloaded from CSIT Tutor

12 | P a g e b i i z a y @ g m a i l . c o m

Arithmetic Shift
The arithmetic shift shifts a signed binary number to the left or right. To the left is multiplying by 2,
to the right is dividing by 2 (i.e. an arithmetic left shift multiplies a signed number by 2 and an
arithmetic right shift divides a signed number by 2).

Arithmetic shifts must leave the sign bit unchanged because the sign of the number remains the
same when it is multiplied or divided by 2. The left most bit in a resister holds a sign bit and
remaining hold the number. Negative numbers are in 2's complement form. The figure below
shows the arithmetic shift right and left respectively.

Examples:
R2 ← ashr R2
R3 ← ashl R3

Figure: Arithmetic Shift Right

Arithmetic Shift-right
Arithmetic shift-right leaves the sign bit unchanged and shifts the number (including a sign bit) to
the right. Thus Rn-1 remains same; Rn-2 receives input from Rn-1 and so on.

Arithmetic Shift-left
Arithmetic shift-left inserts a 0 into R0 and shifts all other bits to left. Initial bit of Rn-1 is lost and
replaced by the bit from Rn-2.

Overflow case during arithmetic shift-left
A sign reversal occurs if the bit in Rn-1 changes in value after the shift. This happens if the
multiplication causes an overflow. Thus, left arithmetic shift operation must be checked for the
overflow.

An overflow occurs after an arithmetic shift-left if before shift Rn-1 ≠ Rn-2. An overflow flip-flop Vs
can be used to detect the overflow: Vs = Rn-1 ⊕ Rn-2. If V = 0, there is no overflow but if V = 1,
overflow is detected.

Downloaded from CSIT Tutor

13 | P a g e b i i z a y @ g m a i l . c o m

Hardware implementation of shift micro-operations
A bi-directional shift unit with parallel load could be used to implement this. Two clock pulses are
necessary with this configuration: one to load the value and another to shift. In a processor unit
with many registers it is more efficient to implement the shift operation with a combinational
circuit. The content of a register to be shifted is first placed onto a common bus and the output is
connected to the combinational shifter, the shifted number is then loaded back into the register.

This can be constructed with multiplexers.

Downloaded from CSIT Tutor

14 | P a g e b i i z a y @ g m a i l . c o m

It has 4 data inputs A0 through A3 and 4 data outputs H0 through H3. There are two serial inputs,
one for shift-left (IL) and other for shift-right (IR). When S = 0: input data are shifted right (down in
fig). When S = 1: input data are shifted left (up in fig).

Arithmetic Logic Shift Unit
The arithmetic logic unit (ALU) is a common operational unit connected to a number of storage
registers. To perform a micro-operation, the contents of specified registers are placed in the inputs
of the ALU. The ALU performs an operation and the result is then transferred to a destination
register. The ALU is a combinational circuit so that the entire register transfer operation from the
source registers through the ALU and into the destination register can be performed during one
clock pulse period.

Downloaded from CSIT Tutor

15 | P a g e b i i z a y @ g m a i l . c o m

The diagram above shows just one typical stage. The circuit must be repeated n times for an n-bit
ALU.

i. Input Ai and Bi are applied to both the arithmetic and logic units. A particular micro-
operation is selected with inputs S1 and S0.

ii. A 4x1 MUX at the output chooses between an arithmetic output in Di and a logic output in
Ei.

iii. The data inputs to the multiplexer are selected with inputs S3 and S2.
iv. The other two data inputs to the MUX receive inputs Ai-1 for the shift right operation and

Ai+1 for the shift left operation.
v. Cin is the selection variable for the arithmetic operation.

vi. The circuit provides eight arithmetic operation, four logic operations and two shift

operations. Each operation is selected with the five variables s3, s2, s1, s0 and cin. The input

carry cin is used for arithmetic operations only.

vii. The table lists the 14 operations of the ALU. The first eight are arithmetic operation and are
selected with S3 S2 = 00. The next four are logic operation and are selected with S3 S2 = 01
and last two operation are shift operation and are selected with S3 S2 = 10 and 11.

Book References:
(1) Andrew S. Tanenbaum, “Structured Computer Organization”, Fourth Edition.
(2) M. Morris Mano, “Computer System Architecture”, Pearson, 3rd Ed, 2004.
(3) John P. Hayes, “Computer Architecture & Organization”.

Web References:
(4) http://en.wikipedia.org
(5) http://www.cs.uwm.edu/
(6) http://www.transtutors.com/

Downloaded from CSIT Tutor

http://en.wikipedia.org/
http://www.cs.uwm.edu/
http://www.transtutors.com/

16 | P a g e b i i z a y @ g m a i l . c o m

Assignments:
(1) What do you mean by shift micro-operations? Explain. (T.U. 2066)
(2) What do you mean by logic micro-operations? (T.U. 2067)
(3) Differentiate between logic micro operations and shift micro operations. (T.U. 2068)
(4) Explain the arithmetic logic shift unit. (T.U. 2069)
(5) Design the binary adder-subtractor with example. (T.U. 2070)
(6) Design a 2-bit adder and logic circuit capable of performing AND, ADD, complement and shift

left operation.
(7) Give the hardware realization of 4-bit arithmetic circuit capable of doing addition, subtraction,

increment, decrement etc. Give the function table and explain its operation.
(8) The 8-bit registers A, B, C & D are loaded with the value (F2)H, (FF)H, (B9)H and (EA)H

respectively. Determine the register content after the execution of the following sequence of
micro-operations sequentially.

(i) A ← A + B, C ← C + Shl(D)
(ii) C ← C ^ D, B ← B + 1.
(iii) A ← A – C.
(iv) A ← Shr(B) ⊕ Cir(D)

(9) A half-adder is a combinational logic circuit that has two inputs, X and Y and two outputs, S and
C that are the sum and carry-out, respectively, resulting from binary addition of X and Y.

(i) Design a half-adder as a two-level AND-OR circuit.
(ii) Show how to implement a full adder, by using half adders.

(10) Show the implementation of a full adder using half adders
(11) Differentiate between arithmetic shift and logical shift.
(12) Register A is having S-bit number 11011001. Determine the operand and logic micro-operation

to be performed in order to change the value in A to:
(i) 01101101
(ii) 11111101
(iii) Starting from an initial value R = 11011101, determine the sequence of binary values in

R after a logical shift left, followed by circular shift right, followed by a logical shift right
and a circular shift left.

A Gentle Advice:
Please go through your text books and reference books for detail study!!! Thank you all.

Notes Compiled By:
Bijay Mishra
biizay.blogspot.com
9813911076 or 9841695609

Downloaded from CSIT Tutor

1 | P a g e b i i z a y @ g m a i l . c o m

Unit 3 - Fundamental of Computer Organization and
Design

Computer Registers
Register are used to quickly accept, store, and transfer data and instructions that are being used
immediately by the CPU, there are various types of registers those are used for various purpose.
Among of the some mostly used registers named as Accumulator, Data Register, Address Register,
Program Counter, Memory Data Register, Index register, Memory Buffer Register.

Types of Registers:
A processor has many registers to hold instructions, addresses, data, etc. Some of them are:

Fundamental of Computer Organization and Design 7 Hrs.
Computer Register 1 Hr.
Registers for the Basic Computer and Common Bus

Computer Instructions 1.5 Hrs.
Instruction Format
Basic Instructions
Instruction Set Completeness
Types of Instruction (Memory Reference, Register Reference, I/O)

Instruction Cycle 1 Hr.
Phases of Instruction Cycle
Fetch and Decode
Flowchart for Instruction Cycle

Input and Output and Interrupt 1.5 Hrs.
I/O Configuration
Input-Output Instruction
Types of Interrupts
Program Interrupt
Interrupt Cycle

Basic Computer Design and Accumulator Logic 2 Hrs.
Basic Hardware Components
Flowchart for Computer Operation
Control Logic Gates
Control of Register and Memory
Control of Common Bus
Control of Flip-flop
Design of Accumulator Logic (Control of AC Register, Adder and Logic Circuit)

Downloaded from CSIT Tutor

2 | P a g e b i i z a y @ g m a i l . c o m

Instruction Register (IR)
Instruction Register (16 bits) holds the instruction code of the instruction currently executing.
Outputs of this register are hardwired to specific logic in the control unit, which interprets the bits
to generate control signals.

Address Register (AR)
Address Register (12 bits) is used to interface with the memory unit. All memory-references are
initiated by loading the memory address into AR.

Temporary Register (TR)
Temporary Register (16 bits) is an extra register for storing data or addresses.

Input and Output Registers
The Basic Computer has one input device and one output device. The Input Register (INPR) holds an
8 bit character gotten from an input device. The Output Register (OUTR) holds an 8 bit character to
be send to an output device.

Figure: Registers in the Basic Computer

Program Counter (PC)
The program counter (PC) is commonly called the instruction pointer (IP) in Intel x86
microprocessors, and sometimes called the Instruction Address Register (IAR), or just part of the
instruction sequencer in some computers, is a processor register.

Program Counter (12 bits) holds memory address of current/next instruction to be executed.
Updated as part of the instruction cycle. Usually incremented, but may be parallel loaded by
jump/branch instructions. It keeps track of the next memory address of the instruction that is to be
executed once the execution of the current instruction is completed. In other words, it holds the
address of the memory location of the next instruction when the current instruction is executed by
the microprocessor.

Downloaded from CSIT Tutor

3 | P a g e b i i z a y @ g m a i l . c o m

Accumulator Register (AC)
This Register is used for storing the Results those are produced by the System. When the CPU will
generate Some Results after the Processing then all the Results will be Stored into the AC Register.

Accumulator (16 bits) is used for all mathematical, logic, and shift operations except incrementing
and clearing other registers (most have built-in increment and clear capability). It is the destination
for all ALU operations, and a source for all dyadic (two-operand) operations.

Data Register (DR)
A register used in microcomputers to temporarily store data being transmitted to or from a
peripheral device. Data Register (16 bits) is used to contain a second operand for dyadic operations
such as Add, Sub, AND, OR.

Table: List of Basic Computer Registers

Internal BUS Structure
The registers in the basic computer are connected using a bus. Most registers have load, increment,
and clear capabilities built-in. This eliminates the need to use the ALU or the BUS for increment and
clear, and hence we can perform these operations on any register in parallel with other micro-
operations. AR outputs are the memory address bus. They are directly connected to the address
input of the memory unit. AC and DR outputs hardwired into ALU. Hence, operands for dyadic
operations such as add, sub, and, or must be in AC and DR. Inputs of INPR are hardwired from the
input device. We cannot transfer anything into INPR from the bus. Outputs of INPR are hardwired to
ALU. We can only transfer INPR to AC. Outputs of OUTR hardwired to the output device. We cannot
transfer from OUTR to the bus. Memory data inputs and outputs are connected directly to the
internal bus.

Downloaded from CSIT Tutor

4 | P a g e b i i z a y @ g m a i l . c o m

Three control lines, S2, S1, and S0 control which register the bus selects as its input. Either one of the
registers will have its load signal activated, or the memory will have its write signal activated. The
12-bit registers, AR and PC, have 0’s loaded onto the bus in the high order 4 bit positions. When the
8-bit register OUTR is loaded from the bus, the data comes from the low order 8 bits on the bus.

Figure: Common BUS System

Instruction Codes
Instructions are encoded as binary instruction codes. A computer instruction is often divided into
two parts:

 An opcode (Operation Code) that specifies the operation for that instruction

 An address that specifies the registers and/or locations in memory to use for that operation

In the basic computer, since the memory contains 4096 (= 212) words, we needs 12 bit to specify
which memory address this instruction will use. In the basic computer, bit 15 of the instruction
specifies the addressing mode (0: direct addressing, 1: indirect addressing). Since the memory
words, and hence the instructions, are 16 bits long, that leaves 3 bits for the instruction’s opcode.

Downloaded from CSIT Tutor

5 | P a g e b i i z a y @ g m a i l . c o m

Some Common Addressing Modes
Direct: Instruction code contains address of operand; 1 memory-references after fetching
instruction

Immediate: Instruction code contains operand; No memory-reference after fetching instruction

Indirect: Instruction code contains address of address of operand; 2 memory-references after
fetching instruction.

Effective Address (EA)
The address that can be directly used without modification to access an operand for a computation-
type instruction, or as the target address for a branch-type instruction. It is the actual address of the
data in memory.

Downloaded from CSIT Tutor

6 | P a g e b i i z a y @ g m a i l . c o m

Computer Instructions
All Basic Computer instruction codes are 16 bits wide. There are 3 instruction code formats:

Memory-Reference Instructions take a single memory address as an operand, and have the format:

(OP-code = 000 - 110)
If I = 0, the instruction uses direct addressing.
If I = 1, addressing in indirect addressing.

Register-Reference Instructions operate solely on the AC register, and have the following format:

(OP-code = 111, I = 0)

Input/Output Instructions have the following format:

(OP-code =111, I = 1)

Instruction Set Completeness
A computer should have a set of instructions so that the user can construct machine language
programs to evaluate any function that is known to be computable.

Instruction Types

 Functional Instructions
 - Arithmetic, logic, and shift instructions
 - ADD, CMA, INC, CIR, CIL, AND, CLA

 Transfer Instructions
 - Data transfers between the main memory and the processor registers
 - LDA, STA

 Control Instructions
 - Program sequencing and control
 - BUN, BSA, ISZ

 Input/output Instructions
 - Input and output
 - INP, OUT

Downloaded from CSIT Tutor

7 | P a g e b i i z a y @ g m a i l . c o m

Table: Basic Computer Instructions

Instruction Cycle
The CPU performs a sequence of micro-operations for each instruction. The sequence for each
instruction of the Basic Computer can be refined into 4 abstract phases:

1. Fetch an instruction from memory
2. Decode the instruction
3. Read the effective address from memory if the instruction has an indirect address
4. Execute the instruction

After an instruction is executed, the cycle starts again at step 1, for the next instruction.

Instruction Fetch and Decode
Program execution begins with: PC ← address of first instruction, SC ← 0

After this, the SC is incremented at each clock cycle until an instruction is completed, and then it is
cleared to begin the next instruction. This process repeats until a HLT instruction is executed, or
until the power is shut off.

Downloaded from CSIT Tutor

8 | P a g e b i i z a y @ g m a i l . c o m

The instruction fetch and decode phases are the same for all instructions, so the control functions
and micro-operations will be independent of the instruction code.

Everything that happens in this phase is driven entirely by timing variables T0, T1 and T2. Hence, all
control inputs in the CPU during fetch and decode are functions of these three variables alone.

For every timing cycle, we assume SC ← SC + 1 unless it is stated that SC ← 0.

Figure: Register transfers for the fetch phase

The operation D0-7 ← Decode IR(12-14) is not a register transfer like most of our micro-operations,
but is actually an inevitable consequence of loading a value into the IR register. Since the IR outputs
12-14 are directly connected to a decoder, the outputs of that decoder will change as soon as the
new values of IR(12-14) propagate through the decoder.

Note that incrementing the PC at time T1 assumes that the next instruction is at the next address.
This may not be the case if the current instruction is a branch instruction. However, performing the
increment here will save time if the next instruction immediately follows, and will do no harm if it
doesn't. The incremented PC value is simply overwritten by branch instructions.

Downloaded from CSIT Tutor

9 | P a g e b i i z a y @ g m a i l . c o m

Likewise, loading AR with the address field from IR at T2 is only useful if the instruction is a memory-
reference instruction. We won't know this until T3, but there is no reason to wait since there is no
harm in loading AR immediately.

Determining the Instruction Type
By time T2, the opcode has been decoded by the decoder attached to IR(12-14), and the control
signals D0-7 are available. At pulse T2, IR(15) is loaded into the I flip-flop. Hence, all of these signals
are available for use at pulse T3.

D7 indicates that the opcode field is 111, and this is either a register or I/O instruction. (i.e. it is not a
memory-reference instruction.) The I bit allows us to distinguish between register and I/O
instructions.

Figure: Flowchart for instruction cycle

D7' indicates a memory-reference instruction. In this case, the I bit determines the addressing mode.
What happens at time T3 therefore depends on the two variables D7 and I.

 Register-reference: D7I'T3: Execute register-reference instruction.

 I/O Reference: D7IT3: Execute I/O instruction.

 Memory-reference (Indirect addressing): D7'IT3: AR ← M[AR]

Downloaded from CSIT Tutor

10 | P a g e b i i z a y @ g m a i l . c o m

 Memory-reference (Direct addressing): D7'I'T3: Nothing. Effective address is already in AR.
This wastes a clock cycle when direct addressing is used, but it simplifies the memory-
reference execute phase by ensuring that the CPU is in a known state at time T4.

Register-reference Execute Phase
Register Reference Instructions are identified when

 D7 = 1, I = 0

 Register reference instruction is specified in b0 - b11 of IR

 Execution starts with timing signal T3

Hence:

 r = D7IT3 => Register Reference Instruction

 Bi = IR(i) , i = 0,1,2,...,11

Memory-Reference Instructions
Each memory ref instruction is indicated by a unique Di signal. For the memory-reference execute
phase, all control inputs in the CPU are functions of timing signals T4 or later, I, and one of the
variables D0 through D6.

Downloaded from CSIT Tutor

11 | P a g e b i i z a y @ g m a i l . c o m

The effective address of the instruction is in AR and was placed there during timing signal T2 when I
= 0, or during timing signal T3 when I = 1. Memory cycle is assumed to be short enough to complete
in a CPU cycle. The execute phase for memory-reference instructions begins at time T4. Several
memory-reference instructions operate on AC and an operand from memory.

Figure: Flowchart for memory-reference instruction

Downloaded from CSIT Tutor

12 | P a g e b i i z a y @ g m a i l . c o m

Figure: Example of BSA instruction execution

Input-Output and Interrupt

Hardware Summary
The Basic Computer I/O consists of a simple terminal with a keyboard and a printer/monitor.
- The terminal sends and receives serial information
- The serial information from the keyboard is shifted into INPR
- The serial information for the printer is stored in the OUTR
- INPR and OUTR communicate with the terminal serially and with the AC in parallel.
- The flags are needed to synchronize the timing difference between I/O device and the computer

Downloaded from CSIT Tutor

13 | P a g e b i i z a y @ g m a i l . c o m

The register reference instructions are recognized by:

 D7IT3 = p

 IR(i) = Bi, i = 6, …, 11

Table: Input-Output Instructions

Interrupts
With interrupts, the running program is not responsible for checking the status of I/O devices.
Instead, it simply does its own work, and assumes that I/O will take care of itself!

When a device becomes ready, the CPU hardware initiates a branch to an I/O subprogram called an
interrupt service routine (ISR), which handles the I/O transaction with the device.

An interrupt can occur during any instruction cycle as long as interrupts are enabled. When the
current instruction completes, the CPU interrupts the flow of the program, executes the ISR, and
then resumes the program. The program itself is not involved and is in fact unaware that it has been
interrupted.

Downloaded from CSIT Tutor

14 | P a g e b i i z a y @ g m a i l . c o m

Figure: Flowchart for Interrupt Cycle

Interrupts can be globally enabled or disabled via the IEN flag (flip-flop). If interrupts are enabled,
then when either FGI or FGO gets set, the R flag also gets set. (R = FGI V FGO) This allows the system
to easily check whether any I/O device needs service. Determining which one needs service can be
done by the ISR. If R = 0, the CPU goes through a normal instruction cycle. If R = 1, the CPU branches
to the ISR to process an I/O transaction.

The interrupt cycle is a HW implementation of a branch and save return address operation. At the
beginning of the next instruction cycle, the instruction that is read from memory is in address 1. At
memory address 1, the programmer must store a branch instruction that sends the control to an
interrupt service routine. The instruction that returns the control to the original program is “indirect
BUN 0".

Figure: Interrupt Cycle demonstration

Register Transfer Statements for Interrupt Cycle:

 R F/F  1 if IEN (FGI + FGO) T0T1T2  T0T1T2 (IEN) (FGI + FGO): R  1

Downloaded from CSIT Tutor

15 | P a g e b i i z a y @ g m a i l . c o m

The fetch and decode phases of the instruction cycle must be modified:

Replace T0, T1, T2 with R’T0, R'T1, R'T2

The Interrupt Cycle:

 RT0: AR  0, TR  PC

 RT1: M[AR]  TR, PC  0

 RT2: PC  PC + 1, IEN  0, R  0, SC  0

Book References:
(1) Andrew S. Tanenbaum, “Structured Computer Organization”, Fourth Edition.
(2) M. Morris Mano, “Computer System Architecture”, Pearson, 3rd Ed, 2004.
(3) M. Morris Mano, “Logic and Computer Design Fundamentals”, Pearson Education, 2nd Edition
(4) John P. Hayes, “Computer Architecture & Organization”.
(5) W. Stallings, “Computer Organization and Architecture – Designing for Performance”, Prentice

Hall of India, 7th Ed, 2007
(6) V.C. Hamacher, Z. G. Veranesic, and S. G. Zaky, “Computer Organization”, Tata McGraw Hill, 5th

Ed, 2002.
(7) D. A. Pattersen and J. L. Hennesy, “Computer Organization and Design: The Hardware Software

Interface”, Elsevier, 2nd Ed, 2006.

Web References:
(8) http://en.wikipedia.org
(9) http://www.cs.uwm.edu/
(10) http://www.transtutors.com/
(11) http://ecomputernotes.com/
(12) http://www.tutorialspoint.com/

Assignments:
(1) Explain interrupt cycle in detail with a flowchart.
(2) What is the difference between a direct and an indirect address instruction?
(3) A computer uses a memory unit with 256K words of 32 bits each. A binary instruction code is

stored in one word of memory. The instruction has four parts: an indirect bit, an operation code,
a register code part to specify one of 64 registers, and an address part.

(a) How many bits are there in the operation code, the register code part, and the address

part?

(b) Draw the instruction word format and indicate the number of bits in each part.

(4) What do you understand by instruction set completeness? Explain.
(5) Explain the computer instruction with example. (T.U. 2066)
(6) What do you mean by instruction format? Explain. (T.U. 2067)
(7) Differentiate between direct and indirect addressing modes. (T.U. 2067)
(8) Explain the I/O instruction with example. (T.U. 2068)
(9) What do you mean by computer register and computer instructions? Explain. (T.U. 2069)
(10) Write short notes on the following:
 (a) Interrupt Cycle (T.U. 2068)

Downloaded from CSIT Tutor

http://en.wikipedia.org/
http://www.cs.uwm.edu/
http://www.transtutors.com/
http://ecomputernotes.com/
http://www.tutorialspoint.com/

16 | P a g e b i i z a y @ g m a i l . c o m

A Gentle Advice:
Please go through your text books and reference books for detail study!!! Thank you all.

Notes Compiled By:
Bijay Mishra
biizay.blogspot.com
9813911076 or 9841695609

Downloaded from CSIT Tutor

1 | P a g e b i i z a y @ g m a i l . c o m

Unit 4 - Control Unit

Control Memory
Control units that use dynamic microprogramming use a writable control memory. This type of
memory can be used for writing (to change the microprogram) but is used mostly for reading. A
memory that is part of a control unit is called a control memory.

The control unit in a digital computer initiates sequences of micro-operations. The control
variables can be represented by a string of 1’s and 0’s called a control word. The control
information is shared in a control memory, in a micro-programmed organization. A micro-
programmed control unit is a control unit whose binary control variables are stored in memory.
Each word in control memory contains within it is a microinstruction. The control memory is
programmed to begin the desired sequence of micro-operation.

A sequence of microinstructions constitutes a microprogram. When the control signals are
generated by hardware, it is hardwired. In a bus-oriented system, the control signals that
specify micro-operations are groups of bits that select the paths in multiplexers, decoders, and
ALUs.

The control memory is usually a ROM, which stores all control information permanently. The
control address register (CAR) specifies the address of the microinstruction, and the control
data register holds the microinstruction read from memory.

Control Unit 5 Hrs.
Control Memory 1 Hr.
Control Word, Control Memory, Stored Program Organization

Hardwired Control 1 Hr.
Introduction, Timing and Control, Control Unit of Basic Computer, Timing Signal

Micro-programmed Control 2 Hrs.
Micro-program Control Organization
Address Sequencing

 Introduction, Conditional Branching, Mapping of Instructions, Subroutines
Micro-programs

 Micro-instruction and micro-operation Format, Symbolic microinstructions, Symbolic
micro-program, Binary micro-program

Design of control unit 1 Hr.
F-field Decoding, Micro-program Sequencer

Downloaded from CSIT Tutor

2 | P a g e b i i z a y @ g m a i l . c o m

Figure: Micro-programmed Control Organization

The microinstruction contains a control word that specifies one or more micro-operations for
the data processor. Once these operations are executed, the control must determine the next
address. The location of the next microinstruction is generally the one next in sequence,
otherwise, it may be located somewhere else in the control memory. For this reason it is
necessary to use some bits of the present microinstruction to control the generation of the
address of the next microinstruction. The next address may also be a function of external input
conditions.

While the micro-operations are being executed, the next address is computed in the next
address generator circuit and then transferred into the control address register to read the
next micro-instruction. Hence a microinstruction contains bits for initiating micro-operations in
the data processor part and bits that determine the address sequence for the control memory.

A microprogram sequencer is the next address generator, as it determines the address
sequence that is read from control memory. The address of the next microinstruction can be
specified in several ways depending on the sequencer inputs.

Typical functions of a microprogram sequencer are:

 incrementing the CAR by one

 loading into the CAR and address from control memory

 transferring an external address

 loading an initial address to start the control operations

The control data register (CDR) stores the present microinstruction while the next address is
computed and read from memory. The data register is also called a pipeline register. It allows
the execution of the micro-operations specified by the control word simultaneously with the
generation of the next microinstruction. This configuration requires a two-phase clock, with one
clock applied to the address register and the other to the data register.

The main advantage of the micro-programmed control is that once the hardware configuration
is built, there should be no need for further hardware or wiring changes. If we want to make a
different control sequence for the system, all we need to do is to specify a different set of
microinstructions for control memory. The hardware configuration should not be changed for
different operations. We have to change only the microprogram residing in control memory.

Downloaded from CSIT Tutor

3 | P a g e b i i z a y @ g m a i l . c o m

Timing and Control
Timing pulses are used in sequencing the micro-operations in an instruction. A master clock
generator is used for controlling the timing for all register in a computer system. A state of a
register cannot be changed by a clock pulse until it is enabled by the control signal, which are
generated in the control unit and provide control inputs for multiplexers, processor register,
and micro-operations. The control organization is of two types; hardwired control and micro-
programmed control.

Hardwired Control
In a hardwired control, the control signals are generated by using the collection of
combinational circuits. The main advantage of the hardwired control is that, it can be optimized
to produce a fast mode of operation. Whenever a change or modification is to be done in the
design, then the wiring among the various components needs to be done.

Micro-Programmed Control
In a micro-programmed control, a control memory is used for storing control information which
is also programmed for initiating the sequence of micro-operations. Whenever any change or
modification is required in the design, it can be done by updating the micro-program in the
control memory.

Control Unit

Figure: Control unit of Basic Computer

Downloaded from CSIT Tutor

4 | P a g e b i i z a y @ g m a i l . c o m

Control unit consists of two decoders, a sequence counter, and number of logic gates. When an
instruction is read from the memory, it is placed in the instruction register (IR). The instruction
register is divided into three parts; addressing mode, opcode, and address. Control unit is
responsible for interpreting the instruction code and providing the necessary control needed
for processing these instructions. Control unit uses the instruction format for interpreting the
instruction.

Timing is generated by 4-bit sequence counter and 4x16 decoder. The SC can be incremented or
cleared. Example: T0, T1, T2, T3, T4, T0, T1, . . .

Assume: At time T4, SC is cleared to 0 if decoder output D3 is active. This is expressed as:

D3T4: SC  0
Initially, the CLR input of SC is active. The last three waveform on figure below shows how SC is
cleared when D3T4 = 1. Output D3 from the operation decoder becomes active at the end of the
timing signal T2. When timing signal T4 becomes active, the output of the AND gate that
implements the control function D3T4 becomes active. This signal is applied to the CLR input of
SC. On the next positive clock transition the counter is cleared to 0. This causes the timing signal
T0 to become active instead of T5 that would have been active if SC were incremented instead
of cleared.

Figure: Example of Control Timing Signal

Address Sequencing
The microprogram consists of microinstructions that specify various internal control signals for
execution of register micro-operations. Process of finding address of next microinstruction to
be executed is called address sequencing. Address sequencer must have capabilities of finding
address of next micro-instruction in following situations:

 In-line Sequencing

 Unconditional Branch

Downloaded from CSIT Tutor

5 | P a g e b i i z a y @ g m a i l . c o m

 Conditional Branch

 Subroutine Call and Return

 Looping

 Mapping from instruction opcode to address in control memory

Microinstructions are stored in control memory in groups, with each group specifying a routine.
Each computer instruction has its own microprogram routine to generate the micro-operations.
The hardware that controls the address sequencing of the control memory must be capable of
sequencing the microinstructions within a routine and be able to branch from one routine to
another.

Figure: Selection of Address for Control Memory

The steps that the control must undergo during the execution of a single computer instruction
are:

 Load an initial address into the CAR when power is turned on in the computer. This
address is usually the address of the first microinstruction that activates the instruction
fetch routine. IR holds instruction.

Downloaded from CSIT Tutor

6 | P a g e b i i z a y @ g m a i l . c o m

 The control memory then goes through the routine to determine the effective address
of the operand. AR holds operand address.

 The next step is to generate the micro-operations that execute the instruction by
considering the opcode and applying a mapping.

 After execution, control must return to the fetch routine by executing an unconditional
branch.

The microinstruction in control memory contains a set of bits to initiate micro-operations in
computer registers and other bits to specify the method by which the next address is obtained.

Conditional Branching
Conditional branching is obtained by using part of the microinstruction to select a specific
status bit in order to determine its condition. The status conditions are special bits in the
system that provide parameter information such as the carry-out of an adder, the sign bit of a
number, the mode bits of an instruction, and i/o status conditions. The status bits, together
with the field in the microinstruction that specifies a branch address, control the branch logic.
The branch logic tests the condition, if met then branches, otherwise, increments the CAR. If
there are 8 status bit conditions, then 3 bits in the microinstruction are used to specify the
condition and provide the selection variables for the multiplexer.

If Condition is true, set the appropriate field of status register to 1. Conditions are tested for O
(overflow), N (negative), Z (zero), C (carry), etc. Then test the value of that field if the value is 1
take branch address from the next address field of the current microinstruction). Otherwise
simple increment the address.

Unconditional Branching
For unconditional branching, fix the value of one status bit to be one load the branch address
from control memory into the CAR.

Mapping of Instruction
A special type of branch exists when a microinstruction specifies a branch to the first word in
control memory where a microprogram routine is located. The status bits for this type of
branch are the bits in the opcode. Assume an opcode of four bits and a control memory of 128
locations. The mapping process converts the 4-bit opcode to a 7-bit address for control
memory. This provides for each computer instruction a microprogram routine with a capacity of
four microinstructions.

Another Approach of Mapping
Modify opcode to use it as an address of control memory.

Downloaded from CSIT Tutor

7 | P a g e b i i z a y @ g m a i l . c o m

Mapping Function Implemented by ROM or PLA
Use opcode as address of ROM where address of control memory is stored and then use that
address as an address of control memory.

Subroutines
Subroutines are programs that are used by other routines to accomplish a particular task and
can be called from any point within the main body of the microprogram. Frequently many
micro-programs contain identical section of code. Microinstructions can be saved by employing
subroutines that use common sections of microcode.

Microprogram Example
Once we have a configuration of a computer and its micro-programmed control unit, the
designer generates the microcode for the control memory. Code generation of this type is
called microprogramming and is similar to conventional machine language programming. The
block diagram of computer consists of:

Figure: Computer hardware configuration

Downloaded from CSIT Tutor

8 | P a g e b i i z a y @ g m a i l . c o m

Transfer of information among registers in the processor is through Multiplexers rather than a
bus.

Two memory units:
Main memory – stores instructions and data
Control memory – stores microprogram

Four processor registers:
Program counter – PC
Address register – AR
Data register – DR
Accumulator register - AC

Two control unit registers:
Control address register – CAR
Subroutine register – SBR

Three fields for an instruction:

I = 1-bit for indirect addressing
Opcode = 4-bit
Address Field = 11-bit

The example will only consider the following 4 of the possible 16 memory instructions

Symbol Opcode Description
ADD 0000 AC ← AC + M[EA]
BRANCH 0001 If (AC < 0) then (PC ← EA)
STORE 0010 M[EA] ← AC
EXCHANGE 0011 AC ← M[EA], M[EA] ← AC

Note: (EA is the effective address)

The microinstruction format is composed of 20 bits with four parts:

Downloaded from CSIT Tutor

9 | P a g e b i i z a y @ g m a i l . c o m

Three fields F1, F2, and F3 specify micro-operations for the computer [3 bits each].
The CD field selects status bit conditions [2 bits]
The BR field specifies the type of branch to be used [2 bits]
The AD field contains a branch address [7 bits]

Each of the three micro-operation fields can specify one of seven possibilities. Therefore only
21 micro-operations are used. No more than three micro-operations can be chosen for a
microinstruction. If fewer than three are needed, the code 000 = NOP is used.

Five letters are used to specify a transfer-type micro-operation. First two designate the source
register, Third is a ‘T’, and Last two designate the destination register.

Downloaded from CSIT Tutor

10 | P a g e b i i z a y @ g m a i l . c o m

Table: Symbols and Binary Code for Microinstruction Fields

Symbolic Microinstructions
A symbolic microprogram can be translated into its binary equivalent by means of an
assembler. Each line of an assembly language microprogram defines a symbolic
microinstruction and is divided into five fields: Label, micro-operations, CD, BR, and AD. The
fields specify the following information:

1. The label field may be empty or it may specify a symbolic address. Terminate with a
colon (:)

2. The micro-operations field consists of 1-3 symbols, separated by commas. Only one
symbol from each F field. If NOP, then translated to 9 zeros

3. The condition field specifies one of the four conditions: U, I, S or Z
4. The branch field has one of the four branch symbols
5. The address field has three formats

a. A symbolic address – must also be a label
b. The symbol NEXT to designate the next address in sequence
c. Empty if the branch field is RET or MAP and AD is converted to 7 zeros

Design of Control Unit
After getting the micro-operations we have to execute these micro-operations but before that
we need to decode them. The 9-bits of the micro-operation field are divided into 3 subfields of
3 bits each. The control memory output of each subfield must be decoded to provide distinct
micro-operations. The outputs of the decoders are connected to the appropriate inputs in the
processor unit. The Figure below shows 3 decoders and connections that must be made from
their outputs.

Downloaded from CSIT Tutor

11 | P a g e b i i z a y @ g m a i l . c o m

Fig. Decoding of Micro-operation Fields.

Three decoders and some of the connections that must be made from their outputs. Each of
the three fields of the microinstruction presently available in the output of control memory are
decoded with a 3x8 decoder to provide eight outputs.

 when F1 = 5, transfers the content of DR(0-10) to AR (DRTAR)

 when F1 = 6 there is a transfer from PC to AR (PCTAR)

 Outputs 5 and 6 of decoder F1 are connected to the load input of AR so that information
is transferred to AR.

The multiplexers select the information from DR when output 5 is active and from PC when
output 5 is inactive. Because we have 8 micro-operations represented with the help of 3 bits in
every table and also we have 3 such tables possible we have decoded these micro-operations
field bits with three 3 x 8 decoders.

Downloaded from CSIT Tutor

12 | P a g e b i i z a y @ g m a i l . c o m

After getting the micro-operations, we have to give it to particular circuits, the data
manipulation type of micro-operations like AND, ADD, Sub and so on we give to ALU and the
corresponding results moved to AC. The ALU has been provided data from AC and DR.

And for data transfer type of instructions like in the case of PCTAR or DRTAR we need to simply
transfer the values. Because we have two options for data transfer in AR we are taking the help
of MUX to choose one. We will take 2 x 1 MUX and one select line which is attached with
DRTAR micro-operation signal. That means if DRTAR is high then MUX will choose DR to
transfer the data to AR else PC‘s data will be moved to AR. And the corresponding data
movement will be done with the help of load high or not. If any of the values is high the value
will be loaded to AR.

The clock signal is provided for the synchronization of micro-operations.

Instead of using gates to generate the control signals marked by the symbols AND, ADD, and
DR. These inputs will now come from the outputs of the decoders associated with the symbols
AND, ADD, and DRTAC respectively. The other outputs of the decoders that are associated with
an AC operation must also be connected to the arithmetic logic shift unit in a similar fashion.

Microprogram Sequencer:
The basic components of a micro-programmed control unit are the control memory and the
circuits that select the next address. The address selection part is called a micro-program
sequencer. It can be constructed with digital functions to suit a particular application. Main
purpose is to present an address to the control memory so that a microinstruction may be read
and executed.

Design of input logic:
The input logic circuit in the figure below has three inputs, I0, I1, and T, and three outputs S0, S1,
and L. Variables S0 and S1 select one of the source addresses for CAR. Variable L enables the
load input in SBR. The binary values of the two selection variables determine the path in the
multiplexer.

For example, with S1S0 = 10, multiplexer input number 2 is selected and establishes a transfer
path from SBR to CAR. Note that each of the four inputs as well as the output of MUX 1
contains a 7-bit address.

The truth table can be used to obtain the simplified Boolean functions for the input logic circuit:

S1=I1
S0 = I1I0+I’1T
L = I’1I0T

The circuit can be constructed with three AND gates, an OR gate and an inverter. The truth
table for the input logic circuit is shown in table below:

Downloaded from CSIT Tutor

13 | P a g e b i i z a y @ g m a i l . c o m

Figure: Microprogram Sequencer for a Control Memory

Downloaded from CSIT Tutor

14 | P a g e b i i z a y @ g m a i l . c o m

References:
1. Andrew S. Tanenbuam, “Structured Computer Organization”, PHI
2. J. P. Hayes, “Computer Architecture and Organization”, McGraw Hill, 3rd Ed, 1998.
3. M. Morris Mano, “Computer System Architecture”, Pearson, 3rd Ed, 2004.
4. M. Morris Mano, “Digital Design”, Pearson Education, Third Edition
5. M. Morris Mano, “Logic and Computer Design Fundamentals”, Pearson Education, 2nd

Edition
6. V.C. Hamacher, Z. G. Veranesic, and S. G. Zaky, “Computer Organization”, Tata McGraw Hill,

5th Ed, 2002.
7. W. Stallings, “Computer Organization and Architecture – Designing for Performance”,

Prentice Hall of India, 7th Ed, 2007
8. D. A. Pattersen and J. L. Hennesy, “Computer Organization and Design: The Hardware

Software Interface”, Elsevier, 2nd Ed, 2006.

Assignments:
(1) What is the difference between a microprocessor and a microprogram? Is it possible to

design a microprocessor without a microprogram? Are all micro-programmed computers
also microprocessor?

(2) Explain hardwired control and micro-programmed control. Is it possible to have a hardwired
control associated with a control memory?

(3) Define: micro-operation, microinstruction, microprogram, and microcode.
(4) Using table 7-1 from textbook (Morris Mano, 3rd Edition), give the 9-bit micro-operation

field for the following micro-operations:
a. AC ← AC + 1, DR ← DR + 1

b. PC ← PC + 1, DR ← M[AR]

c. DR ← AC, AC ← DR

(5) What do you mean by field decoding? Explain with block diagram. (T.U. 2066)
(6) Explain the microprogram sequence with an example along with a suitable diagram and a

truth table. (T.U. 2067)
(7) Differentiate between hardwired and microprogram control unit. (T.U. 2067 and 2070)
(8) What do you mean by control memory? Explain the microinstructions and micro-operation

format. (T.U. 2068)
(9) What is the general model of Microprogram Control Unit? Explain the major steps while

designing the microprogram control unit. (T.U. 2070)

A Gentle Advice:
Please go through your text books and reference books for detail study!!! Thank you all.

Notes Compiled By:
Bijay Mishra
biizay.blogspot.com
9813911076 or 9841695609

Downloaded from CSIT Tutor

1 | P a g e b i i z a y @ g m a i l . c o m

Unit 5 - Central Processing Unit

Introduction
The part of the computer that performs the bulk of data-processing operations is called the
central processing unit and is referred to as the CPU. The Arithmetic Logic Unit (ALU) and the
Control Unit (CU) together are termed as the Central Processing Unit (CPU). The CPU is the most
important component of a computer’s hardware. The CPU is made up of three major parts, as
shown in figure below:

Figure: Components of CPU

Central Processing Unit 6 Hrs.
Register Organization 1 Hr.
Bus system of CPU, Control Word, ALU and Micro-operation for CPU

Register Stack and Memory Stack 1 Hr.
LIFO and Stack Pointer, Register Stack, Memory Stack

One address and two address instruction 1 Hr.
Instruction format, One address instruction, Two address instruction, Three address instruction,
and Zero address instruction

Addressing modes 1 Hr.
Introduction, Implied mode, Immediate mode, Register mode, Register indirect mode, Auto-
increment/Auto-decrement mode, Relative address mode, Indexed addressing mode, Base
register addressing mode

Data transfer and Manipulation 1 Hr.
Basic operations, Data transfer instructions
Data manipulation instructions

 Types, Arithmetic instructions, Logical and bit manipulation instruction, Shift instruction

Introduction to RISC and CISC 1 Hr.
Introduction to RISC and CISC, Characteristics of RIAC and CISC, Overlapped Register Window

Downloaded from CSIT Tutor

2 | P a g e b i i z a y @ g m a i l . c o m

1. A set of registers for holding binary information.
2. An arithmetic and logic unit (ALU) for performing data manipulation, and
3. A control unit that coordinates and controls the various operations and initiates the appropriate
sequence of micro-operations for each task.

Computer instructions are normally stored in consecutive memory locations and are executed in
sequence one by one. The control unit allows reading of an instruction from a specific address in
memory and executes it with the help of ALU and Register.

All the arithmetic and logical Operations are performed in the CPU in special storage areas called
registers. The size of the register is one of the important considerations in determining the
processing capabilities of the CPU. Register size refers to the amount of information that can be
held in a register at a time for processing. The larger the register size, the faster may be the speed
of processing.

The register set stores intermediate data used during the execution of the instructions. The
arithmetic logic unit (ALU) performs the required micro-operations for executing the instructions.
The control unit supervises the transfer of information among the registers and instructs the ALU
as to which operation to perform.

General Register Organization
The number and the nature of registers is a key factor that differentiates among computers. For
example, Intel Pentium has about 32 registers. Some of these registers are special registers and
others are general-purpose registers.

The general-purpose registers as the name suggests can be used for various functions. For
example, they may contain operands or can be used for calculation of address of operand etc.

When a large number of registers are included in the CPU, it is most efficient to connect them
through a common bus system. The registers communicate with each other not only for direct
data transfers, but also while performing various micro-operations. Hence it is necessary to
provide a common unit that can perform all the arithmetic, logic, and shift micro-operations in the
processor.

Why we need CPU registers?
During instruction execution, we could store pointers, counters, return addresses, temporary
results and partial products in some locations in RAM, but having to refer memory locations for
such applications is time consuming compared to instruction cycle. So for convenient and more
efficient processing, we need processor registers (connected through common bus system) to
store intermediate results.

A bus organization for seven CPU registers is shown in figure below. The output of each register is
connected to two multiplexers (MUX) to form the two buses A and B. The selection lines in each
multiplexer select one register or the input data for the particular bus. The A and B buses form the
inputs to a common arithmetic logic unit (ALU). The operation selected in the ALU determines the
arithmetic or logic micro-operation that is to be performed.

Downloaded from CSIT Tutor

3 | P a g e b i i z a y @ g m a i l . c o m

The result of the micro-operation is available for output data and also goes into the inputs of all
the registers. The register that receives the information from the output bus is selected by a
decoder. The decoder activates one of the register load inputs, thus providing a transfer path
between the data in the output bus and the inputs of the selected destination register.

For example, to perform the operation R1 ← R2 + R3 the control must provide binary selection
variables to the following selector inputs:
1. MUX A selector (SELA): to place the content of R2 into bus A.
2. MUX B selector (SELB): to place the content of R3 into bus B.
3. ALU operation selector (OPR): to provide the arithmetic addition A + B.
4. Decoder destination selector (SELD): to transfer the content of the output bus into R1

Figure: Register set with common ALU

Downloaded from CSIT Tutor

4 | P a g e b i i z a y @ g m a i l . c o m

Control Word
There are 14 binary selection inputs in the unit, and their combined value specifies a control word.
The 14-bit control word is defined in figure below.

Figure: Control Word

It consists of four fields. Three fields contain three bits each, and one field has five bits. The three
bits of SELA select a source register for the A input of the ALU. The three bits of SELB select a
register for the B input of the ALU. The three bits of SELD select a destination register using the
decoder and its seven load outputs. The five bits of OPR select one of the operations in the ALU.
The 14-bit control word when applied to the selection inputs specify a particular micro-operation.

Table: Encoding of register selection fields

Table: Encoding of ALU operations

Downloaded from CSIT Tutor

5 | P a g e b i i z a y @ g m a i l . c o m

Examples of Microoperations
Suppose, we have the subtract microperation as: R1 ← R2 – R3. A control word of 14-bits is
needed to specify a micro-operation in the CPU. The control word for a given micro-operation can
be derived from the selection variables. Here, R1 ← R2 – R3, specifies R2 for the A input of the
ALU, R3 for the B input of the ALU, R1 for the destination register, and the ALU operation to
subtract A-B. Thus the control word is specified by the four fields and can obtain as follows:

Hence the control word for this micro-operation was: 01001100100101

Table: Examples of Microoperations for CPU

Stack Organization
Stack is a Last In First Out (LIFO) list. Stack is a storage that stores information in such a manner
that the item stored last is the first item retrieved. Stack consists of a memory unit with address
register that holds the address for the stack called a stack pointer (SP) which always points at the
top item in the stack. The two operation of stack are the insertion and deletion of items. The
operation of insertion is called PUSH and the deletion is called POP.

Register Stack
It is the collection of finite number of registers. Stack pointer (SP) points to the register that is
currently at the top of stack. Diagram shows 64-word register stack. 6-bit address SP points stack
top. Currently 3 items are placed in the stack: A, B and C do that content of SP is now 3 (actually
000011). 1-bit registers FULL and EMTY are set to 1 when the stack is full and empty respectively.
DR is data register that holds the binary data to be written into or read out of the stack.

/* Initially, SP = 0, EMPTY = 1 (true), FULL = 0 (false) */

PUSH Operation: The PUSH operation is implemented with the following sequence of micro-
operations:
SP ← SP + 1 Increment stack pointer.
M[SP] ← DR Write item on top of the stack.
If (SP = 0) then (FULL ← 1) Check if stack is full
EMTY ← 0 Mark the stack not empty.

Downloaded from CSIT Tutor

6 | P a g e b i i z a y @ g m a i l . c o m

POP Operation: The POP operation is implemented with the following sequence of micro-
operations:
DR ← M[SP] Read item from the top of stack
SP ← SP - 1 Decrement stack pointer
If (SP = 0) then (EMTY ← 1) Check if stack is empty
FULL ← 0 Mark the stack not full

Figure: Block diagram of a 64-word stack

Memory Stack
A stack can exist as a stand-alone unit or can be implemented in a random-access memory
attached to a CPU. The implementation of a stack in the CPU is done by assigning a portion of
memory to a stack operation and using a processor register as a stack pointer. The program
counter PC points at the address of the next instruction in the program. The address register AR
points at an array of data. The stack pointer SP points at the top of the stack. The three registers
are connected to a common address bus, and either one can provide an address for memory. PC is
used during the fetch phase to read an instruction. AR is used during the execute phase to read an
operand. SP is used to push or pop items into or from the stack. The initial value of SP is at
maximum address location and the stack grows with decreasing addresses.

PC: used during fetch phase to read an instruction.
AR: used during execute phase to read an operand.
SP: used to push or pop items into or from the stack.

In the figure below, initial value of SP is 4001 and stack grows with decreasing addresses. First
item is stored at 4000, second at 3999 and last address that can be used is 3000. No provisions are
available for stack limit checks.

Downloaded from CSIT Tutor

7 | P a g e b i i z a y @ g m a i l . c o m

Push Operation: A new item is inserted with the push operation as follows:
SP ← SP - 1
M[SP] ← DR

POP Operation: A new item is deleted with a pop operation as follows:
DR ← M[SP]
SP ← SP + 1

Figure: Computer memory with program, data, and stack segments

Instruction Formats
Instruction format is the function of the control unit within the CPU to interpret each instruction
code. The bits of the instruction are divided into groups called fields. The most common fields are:

1. Operation code field – Specifies the operation to be performed.
2. Address field – Designates a memory address or a processor register
3. Mode field – specifies the way the operand or effective address is determined

A register address is a binary number of k bits that defines one of 2k registers in the CPU. • The
instructions may have several different lengths containing varying number of addresses. The
number of address fields in the instruction format of a computer depends on the internal
organization of its registers.

Downloaded from CSIT Tutor

8 | P a g e b i i z a y @ g m a i l . c o m

Processor Organization
Most computers fall into one of the three following processor organizations:

1. Single Register (Accumulator) organization
2. General register organization
3. Stack organization

The Single Register (Accumulator) Organization uses one address field. Example: ADD X, where X
is the address of the operand. The ADD instruction results in operation AC ← AC + M[X], where AC
is the accumulator register and M[X] denotes memory word located at address X.

 Basic Computer is a good example

 Accumulator is the only general purpose register

 Uses implied accumulator register for all operations

The General Register Organization uses three address fields. Example: ADD R1, R2, R3, where R1,
R2, and R3 are the registers. The above ADD instruction results in the operation R1 ← R2 + R3

 Used by most modern processors

 Any of the registers can be used as the source or destination for computer operations.

The Stack Organization would require one address field for PUSH/POP operations and none for
operation-type instructions. Example: PUSH X, which pushes the word at address X on top of the
stack. The instruction ADD in a stack computer consists of opcode only with no address field.

 All operations are done with the stack

 For example, an OR instruction will pop the two top elements from the stack, do a logical
OR on them, and push the result on the stack.

Downloaded from CSIT Tutor

9 | P a g e b i i z a y @ g m a i l . c o m

Types of Instruction
Instruction format of a computer instruction usually contains 3 fields: operation code field
(opcode), address field and mode field. The number of address fields in the instruction format
depends on the internal organization of CPU.

On the basis of no. of address field we can categorize the instruction as below:

Three-Address Instructions
Computers with three-address instruction formats can use each address field to specify either a
processor register or a memory operand.

Example: X = (A+B) * (C + D)

ADD R1, A, B // R1 ← M [A] + M [B]
ADD R2, C, D // R2 ← M[C] + M [D]
MUL X, R1, R2 // M[X] ← R1 * R2

It is assumed that the computer has two processor registers, R1 and R2. The symbol M[A] denotes
the operand at memory address symbolized by A. The advantage of the three-address format is
that it results in short programs when evaluating arithmetic expressions. The disadvantage is that
the binary-coded instructions require too many bits to specify three addresses.

Two-Address Instructions
These instructions are most common in commercial computers. Here again each address field can
specify either a processor register or a memory word.

Example: X = (A+B) * (C + D)

MOV R1, A // R1 ← M [A]
ADD R1, B // R1 ← R1 + M [A]
MOV R2, C // R2 ← M[C]
ADD R2, D // R2 ← R2 + M [D]
MUL R1, R2 // R1 ← R1 * R2
MOV X, R1 // M[X] ← R1

The MOV instruction moves or transfers the operands to and from memory and processor
registers. The first symbol listed in an instruction is assumed to be both a source and the
destination where the result of the operation is transferred.

One-Address Instructions
One-address instruction uses an implied accumulator (AC) register for all data manipulation. All
operations are done between AC and memory operand.

Example: X = (A+B) * (C + D)

LOAD A // AC ← M [A]
ADD B // AC ← AC + M [B]
STORE T // M [T] ← AC

Downloaded from CSIT Tutor

10 | P a g e b i i z a y @ g m a i l . c o m

LOAD C // AC ← M[C]
ADD D // AC ← AC + M [D]
MUL T // AC ← AC * M [T]
STORE X // M[X] ← AC

T is the address of a temporary memory location required for storing the intermediate result.

Zero-Address Instructions
A stack-organized computer uses this type of instructions. The name “zero-address” is given to this
type of computer because of the absence of an address field in the computational instructions.

Example: X = (A+B) * (C + D)

PUSH A // TOS ← A
PUSH B // TOS ← B
ADD // TOS ← (A + B)
PUSH C // TOS ← C
PUSH D // TOS ← D
ADD // TOS ← (C + D)
MUL // TOS ← (C + D) * (A + B)
POP X // M[X] ← TOS

A stack-organized computer does not use an address held for the instructions ADD and MUL. The
PUSH and POP instructions, however, need an address held to specify the operand that
communicates with the stack.

Addressing Modes
The addressing mode specifies a rule for interpreting or modifying the address field of the
instruction before the operand is actually referenced. The decoding step in the instruction cycle
determines the operation to be performed, the addressing mode of the instruction, and the
location of the operands.

Purpose of Addressing Modes:

1. To give programming versatility to the user by providing such facilities as pointers to
memory, counters for loop control, indexing of data, and program relocation.

2. To reduce the number of bits in the addressing field of the instruction. The availability of
the addressing modes gives the experienced assembly language programmer flexibility for
writing programs that are more efficient with respect to the number of instructions and
execution time.

Types of Addressing Modes:
Implied Addressing Mode (or, Stack Addressing Mode):
In this mode the operands are specified implicitly in the definition of the instruction. There is no
need to specify address in the instruction. For example, the instruction "Complement
Accumulator" is an implied mode instruction because the operand in the accumulator register is
implied in the definition of the instruction. In fact, all register reference instructions that use an
accumulator are implied-mode instructions. Example: ADD X; PUSH Y;

Downloaded from CSIT Tutor

11 | P a g e b i i z a y @ g m a i l . c o m

Immediate Addressing Mode:
In this mode the operand is specified in the instruction itself. The operand field contains the actual
operand to be used in conjunction with the operation specified in the instruction. There is no need
to specify address in the instruction. However, operand itself needs to be specified. Immediate-
mode instructions are useful for initializing registers to a constant value. Example: ADD 5

Figure: Immediate Addressing Mode

Register Addressing Mode:
In this mode the operands are in registers that reside within the CPU. Address specified in the
instruction is the address of a register. Designated operand need to be in a register. The particular
register is selected from a register field in the instruction. A k-bit field can specify any one of 2k
registers.

Figure: Register Addressing Mode

Register Indirect Addressing Mode:
In this mode the instruction specifies a register in the CPU whose contents give the address of the
operand in memory. The advantage of a register indirect mode instruction is that the address field
of the instruction uses fewer bits to select a register than would have been required to specify a
memory address directly. EA (effective address) = content of R.

Downloaded from CSIT Tutor

12 | P a g e b i i z a y @ g m a i l . c o m

Figure: Register Indirect Addressing Mode

Autoincrement (or Autodecrement) Addressing Modes:
It is similar to register indirect mode except that the register is incremented or decremented after
(or before) its value is used to access memory. When address stored in the register refers to a
table of data in memory, it is necessary to increment or decrement the register after every access
to the table.

Direct Addressing Mode:
In this mode the effective address is equal to the address part of the instruction. Instruction
specifies the memory address which can be used directly to access the memory. The operand
resides in memory and its address is given directly by the address field of the instruction. EA= IR
(address).

Figure: Direct Addressing Mode

In a branch-type instruction the address field specifies the actual branch address. Example: ADD A
— Adds contents of cell A to accumulator
— Look in memory at address A for operand

Indirect Addressing Mode:
In this mode the address field of the instruction gives the address where the effective address is
stored in memory i.e. the address field of an instruction specifies the address of a memory
location that contains the address of the operand. Control fetches the instruction from memory
and uses its address part to access memory again to read the effective address. EA= M[IR
(address)].

Downloaded from CSIT Tutor

13 | P a g e b i i z a y @ g m a i l . c o m

Figure: Indirect Addressing Mode

Displacement Addressing Mode:
A very powerful mode of addressing combines the capabilities of direct addressing and register
indirect addressing. The effective address is EA = A + (R)

Figure: Displacement Addressing Mode

Relative Addressing Modes:
The Address field of an instruction specifies the part of the address which can be used along with a
designated register (e.g. PC) to calculate the address of the operand.
- Address field of the instruction is short
- Large physical memory can be accessed with a small number of address bits

Three different relative addressing modes exists:

1. PC Relative Addressing Mode: EA = PC + IR(address)
2. Indexed Addressing Mode: EA = IX + IR(address) { IX is index register }
3. Base Register Addressing Mode: EA = BAR + IR(address)

Numerical Example of Addressing Modes
We have 2-word instruction “load to AC” occupying addresses 200 and 201. First word specifies an
operation code and mode and second part specifies an address part (500). Mode field specify any
one of a number of modes. For each possible mode we calculate effective address (EA) and
operand that must be loaded into AC.

Downloaded from CSIT Tutor

14 | P a g e b i i z a y @ g m a i l . c o m

Figure: Numerical Example for Addressing Modes

Direct addressing mode: EA = address field 500 and AC contains 800 at that time.

Immediate mode: Address part is taken as the operand itself. So AC = 500. (Obviously EA = 201 in
this case)

Indirect mode: EA is stored at memory address 500. So EA=800. And operand in AC is 300.

Relative mode:

 PC relative: EA = PC + 500=702 and operand is 325. (since after fetch phase PC is
incremented)

 Indexed addressing: EA=XR+500=600 and operand is 900.

Register mode: Operand is in R1, AC = 400

Register indirect mode: EA = 400, so AC=700

Autoincrement mode: Same as register indirect except R1 is incremented to 401 after execution of
the instruction.

Autodecrement mode: Decrements R1 to 399, so AC is now 450.

Downloaded from CSIT Tutor

15 | P a g e b i i z a y @ g m a i l . c o m

Following table shows the value of effective address and operand loaded into AC for 9 addressing
modes.

Data Transfer and Manipulation
Computers give extensive set of instructions to give the user the flexibility to carryout various
computational tasks. The actual operations in the instruction set are not very different from one
computer to another although binary encodings and symbol name (operation) may vary. So, most
computer instructions can be classified into 3 categories:
1. Data transfer instructions
2. Data manipulation instructions
3. Program control instructions

Data Transfer Instructions:
Data transfer instructions causes transfer of data from one location to another without modifying
the binary information content. The most common transfers are:

 between memory and processor registers

 between processor registers and I/O

 between processor register themselves

Table below lists 8 data transfer instructions used in many computers.

Load: Denotes transfer from memory to registers (usually AC)
Store: Denotes transfer from a processor registers into memory
Move: Denotes transfer between registers, between memory words or memory & registers.
Exchange: Swaps information between two registers or register and a memory word.
Input & Output: Transfer data among registers and I/O terminals.
Push & Pop: Transfer data among registers and memory stack.

Downloaded from CSIT Tutor

16 | P a g e b i i z a y @ g m a i l . c o m

Instructions described above are often associated with the variety of addressing modes. Assembly
language uses special character to designate the addressing mode. E.g. # sign placed before the
operand to recognize the immediate mode. (Some other assembly languages modify the
mnemonics symbol to denote various addressing modes, e.g. for load immediate: LDI).

Example: Consider load to accumulator instruction when used with 8 different addressing modes:

Data Manipulation Instructions:
Data manipulation instructions provide computational capabilities for the computer. These are
divided into 3 parts:
1. Arithmetic instructions
2. Logical and bit manipulation instructions
3. Shift instructions

Arithmetic Instructions:
The four basic arithmetic operations are addition, subtraction, multiplication and division.
“Increment” operation increase the value by one and “decrement” decrease the value by one. The
instruction “Add with carry” performs the addition on two operands plus the value of the carry
from the previous computation. Similarly, “Subtract with borrow” instruction subtracts two words
and borrow which may have resulted from a previous subtract operation. The “negate” instruction
reverse the sign of an integer when represented in the signed 2’s complement form.

Typical arithmetic instructions are listed below:

Downloaded from CSIT Tutor

17 | P a g e b i i z a y @ g m a i l . c o m

Logical and Bit Manipulation Instructions:
Logical instructions perform binary operations on strings of bits stored in registers and are useful
for manipulating individual or group of bits representing binary coded information. Logical
instructions each bit of the operand separately and treat it as a Boolean variable.

The AND, OR, and XOR instructions produce the corresponding logical operations on individual bits
of the operands. Clear is implemented by using AND with one input as 0. XOR is used to
complement selected bits by using one input as 1. Other operation can be implemented similarly.

Shift Instructions.
Instructions to shift the content of an operand are quite useful and are often provided in several
variations (bit shifted at the end of word determine the variation of shift). Shift instructions may
specify 3 different shifts:

1. Logical shifts
2. Arithmetic shifts
3. Rotate-type operations

The table below lists 4 types of shift instructions.

Logical shift inserts 0 at the end position. Arithmetic shift left inserts 0 at the end (identical to
logical left shift) and arithmetic shift right leave the sign bit unchanged (should preserve the sign).
Rotate instructions produce a circular shift. Rotate left through carry instruction transfers carry bit
to right and so is for rotate shift right.

Downloaded from CSIT Tutor

18 | P a g e b i i z a y @ g m a i l . c o m

Program Control Instructions
Instructions are always stored in successive memory locations and are executed accordingly.
Program control instructions provide decision-making capabilities and change the program path.
Typically, the program counter is incremented during the fetch phase to the location of the next
instruction.

A program control type of instruction may change the address value in the program counter and
cause the flow of control to be altered. This provides control over the flow of program execution
and a capability for branching to different program segments. Some of the program control
instructions are:

 Name Mnemonic

Branch (usually one address instruction) and jump instructions can be changed interchangeably.
Skip is zero address instruction and may be conditional & unconditional. Call and return
instructions are used in conjunction with subroutine calls.

Figure: Status Register bits

Status Bit Conditions:
The four status bits are symbolized by C, S, Z, and V. The bits are set or cleared as a result of an
operation performed in the ALU.

Downloaded from CSIT Tutor

19 | P a g e b i i z a y @ g m a i l . c o m

1. Bit C (carry) is set to 1 if the end carry C8 is 1 .It is cleared to 0 if the carry is 0.

2. Bit S (sign) is set to 1 if the highest-order bit F7 is 1. It is set to 0 if the bit is 0.

3. Bit Z (zero) is set to 1 if the output of the ALU contains all 0’s. It is cleared to 0 otherwise. In

other words, Z = 1 if the output is zero and Z = 0 if the output is not zero.

4. Bit V (overflow) is set to 1 if the exclusive-OR of the last two carries is equal to 1, and
cleared to 0 otherwise. This is the condition for an overflow when negative numbers are in
2’s complement. For the 8-bit ALU, V = 1 if the output is greater than +127 or less than -
128.

Conditional Branch Instructions
The commonly used branch instructions are listed below in table.

Downloaded from CSIT Tutor

20 | P a g e b i i z a y @ g m a i l . c o m

Each mnemonic is constructed with the letter B (for branch) and an abbreviation of the condition
name. When the opposite condition state is used, the letter N (for no) is inserted to define the 0
state. Thus BC is Branch on Carry, and BNC is Branch on No Carry. If the stated condition is met,
the address specified by the instruction receives program control. If not, control continues with
the instruction that follows.

The conditional instructions can be associated also with the jump, skip, call, or return type of
program control instructions. The zero status bit is employed for testing if the result of an ALU
operation is equal to zero or not. The carry bit is employed to check if there is a carry out of the
most significant bit position of the ALU. It is also used in conjunction with the rotate instructions
to check the bit shifted from the end position of a register into the carry position.

The sign bit reflects the state of the most significant bit of the output from the ALU. S = 0 denotes
a positive sign and S = 1, a negative sign. Therefore, a branch on plus checks for a sign bit of 0 and
a branch on minus checks for a sign bit of 1. It is worth noticeable that these two conditional
branch instructions can be used to check the value of the most significant bit whether it
represents a sign or not. The overflow bit is used in conjunction with arithmetic operations done
on signed numbers in 2's complement representation.

Subroutine Call and Return
A subroutine is a self-contained sequence of instructions that does away the computational tasks.
A subroutine is employed a number of times during the execution of a program. Wherever a
subroutine is called to perform its function, a branch is executed to the beginning of the
subroutine to start executing its set of instructions. After the subroutine has been executed, a
branch is reverted to the main program. Various names are assigned to the instruction that
transfers program control to a subroutine. For example, call subroutine, jump to subroutine,
branch to subroutine, etc.

A call subroutine instruction comprises of an operation code with an address that specifies the
beginning of the subroutine. As such two operations are included for execution of instruction (1)
storage of the address of next instruction available in the program counter (the return address) in
a temporary location so that the subroutine knows where to return, and (2) transfer of control to
the beginning of the subroutine. The last instruction of every subroutine, referred as return from
subroutine, causes transfer of returns address from the temporary location into the program
counter. Consequently, program control is transferred to the instruction whose address was
originally stored in the temporary location.

Program Interrupt:
Program interrupt can be described as a transfer of program control from a currently running
program to another service program on a request generated externally or internally. After the
service program is executed, the control returns to the original program.

The interrupt procedure is identical to a subroutine call except for three variations: (1) The
interrupt is usually generated by an internal or external signal rather than from the execution of
an instruction (except for software interrupt); (2) the address of the interrupt service program is
determined by the hardware rather than from the address field of an instruction; and (3) an
interrupt procedure usually stores all the information necessary to define the state of the CPU
rather than storing only the program counter.

Downloaded from CSIT Tutor

21 | P a g e b i i z a y @ g m a i l . c o m

Types of Program Interrupt:
Three types of interrupts are:

1. External interrupts
2. Internal interrupts
3. Software interrupts

External interrupts come from input-output (I/O) devices, from a timing device, from a circuit
monitoring the power supply, or from any other external source. Various examples that cause
external interrupts are I/O device requesting transfer of data, I/O device finished transfer of data,
elapsed time of an event, or power failure. Time-out interrupt may result from a program that is in
an endless loop and thus consumes more time its time allocation. Power failure interrupt may
have as its service routine a program that transfers the complete state of the CPU into a
nondestructive memory in the few milliseconds before power ceases.

Internal interrupts arise when an instruction or data is used illegally or erroneously. These
interrupts are also known as traps. Examples of interrupts caused by internal error conditions are
register overflow, attempt to divide by zero, an invalid operation code, stack overflow, and
protection violation. Occurrence of internal errors is usually a resultant of a premature
termination of the instruction execution. Remedial majors to be taken are again determine by
service program that processors the internal interrupts.

On the contrary, a software interrupt is initiated during execution of an instruction. In precise
terms, software interrupt is a special call instruction that behaves like an interrupt rather than a
subroutine call. It can be called to function by the programmer to initiate an interrupt procedure
at any desired point in the program. Usages of software interrupt is mostly associated with a
supervisor call instruction. This instruction is meant for switching from a CPU user mode to the
supervisor mode. Certain operations in the computer are privileged to be assigned to the
supervisor mode only, as for example, a complex input or output transfer procedure. A program
written by a user must run in the user mode. When an input or output transfer is required, the
request for the supervisor mode is sent by means of a supervisor call instruction.

Complex Instruction set computer (CISC)
A computer with large no of instruction is classified as complex instruction set computer (CISC).
The design of an instruction set for a computer depends on not only machine language constructs,
but also on the requirements imposed on the use of high-level programming languages. A
compiler program translate high level languages to machine language programs.

The basic reason to a design a complex instruction set is the need to simplify the compilation and
enhance the overall computer efficiency. The essential goal of a CISC architecture is to attempt to
provide a single machine instruction for each statement that is written in a high-level language.

The major characteristics of CISC architecture are:
1. Large no of instructions typically form hundred to 250 instructions.
2. Same instructions that perform specialized task and are used in frequency.
3. A large variety of addressing modes typically form 2-50 different modes.
4. Variable length instruction format.
5. Instruction that manipulate operands in main memory.

Downloaded from CSIT Tutor

22 | P a g e b i i z a y @ g m a i l . c o m

Table: RISC vs. CISC

Reduced instruction set computer (RISC)
In the early 1980’s a number of computer designers recommended that computer use fewer
instructions with a simple construct so they can be executed much faster within the CPU without
having to use memory as often. This type of computer is classified as RISC. The concept of RISC
architecture involves attempt to reduce execution time by simplifying the instruction set of the
computer.

The major characteristics of RISC processor are:
1. Relatively few instruction.
2. Relatively few addressing mode.
3. Memory access limited to load and store instruction.
4. All operations done within the register of CPU.
5. Fixed length, easily decoded instruction format.
6. Single cycle instruction execution.
7. Hard-wired rather than micro program control

A typical RISC processor architecture includes register-to-register operations, with only simple
load and store operations for memory access. Thus the operand is code into a processor register
with a load instruction. All computational tasks are performed among the data stored in processor
registers and with the help of store instructions results are transferred to the memory. This

Downloaded from CSIT Tutor

23 | P a g e b i i z a y @ g m a i l . c o m

architectural feature simplifies the instruction set and encourages the optimization of register
manipulation. Almost all instructions have simple register addressing so only a few addressing
modes are utilized. Other addressing modes may be included, such as immediate operands and
relative mode. An advantage of RISC instruction format is that it is easy to decode.

An important feature of RISC processor is its ability to execute one instruction per clock cycle. This
is done by a procedure referred to as pipelining. A load or store instruction may need two clock
cycles because access to memory consumes more time than register operations. Other
characteristics attributed to RISC architecture are:

8. A relatively large number of register in the processor unit.
9. Use of overlapped register windows to speed-up procedure call and return.
10. Efficient instruction pipeline.
11. Compiler support for efficient translation of high-level language programs into machine
language programs.

References:
1. Andrew S. Tanenbuam, “Structured Computer Organization”, PHI
2. M. Morris Mano, “Computer System Architecture”, Pearson, 3rd Ed, 2004.
3. M. Morris Mano, “Digital Design”, Pearson Education, Third Edition
4. M. Morris Mano, “Logic and Computer Design Fundamentals”, Pearson Education, 2nd Edition
5. W. Stallings, “Computer Organization and Architecture – Designing for Performance”, Prentice

Hall of India, 7th Ed, 2007

Assignments:
(1) What are the differences between a branch instructions, a call subroutine instruction, and

program interrupt?
(2) What are the major components of a control processing unit?
(3) What do you mean by a control word? Describe the meaning of each field in a control word.
(4) Describe the push and pop examples of a stack with suitable examples.
(5) Give five examples of external interrupts and five examples of internal interrupts.
(6) What is the difference between a software interrupt and a subroutine call?
(7) Mention the type of interrupt and explain it. (T.U. 2066)
(8) Explain the characteristics of RISC and CISC. (T.U. 2066 and 2069)
(9) Write down the following equation in three address, two address and one address instruction.

Y = AB + (C X D) + E(F/G) (T.U. 2066)
(10) Explain the different types of addressing modes and compare each other. (T.U. 2066)
(11) Explain with example of Data manipulation instructions. (T.U. 2067 and 2069)
(12) What are the major differences between RISC and CISC architecture? (T.U. 2067)
(13) What do you mean by addressing modes? Differentiate between indexed addressing modes

and base register addressing mode. (T.U. 2068)
(14) Explain data transfer instruction with example. (T.U. 2067, 2068, 2069 and 2070)
(15) Differentiate between RISC and CISC processor. (T.U. 2068)
(16) Explain the type of instruction format and compare each of them. (T.U. 2069)
(17) Explain logical and bit manipulation instruction with example. (T.U. 2069)
(18) What do you mean by stack organization? What are the major differences between register

stack and memory stack? (T.U. 2069)

Downloaded from CSIT Tutor

24 | P a g e b i i z a y @ g m a i l . c o m

(19) What are the typical characteristics of RISC instruction set architecture? Explain. (T.U. 2070)
(20) Write down the code to evaluate.

Y = A(B/C - D) + E for one, two, three instruction format. (T.U. 2070)
(21) An instruction is stored at location 300 with its address field at location 301. The address field

has the value 400. A processor register as contains the number 200. Evaluate the effective
address if the addressing mode of the instruction is
(a) Direct (b) Immediate (c) Relative (d) Register indirect (e) Index with R1 as the index register

(22) Write a program to evaluate the arithmetic statement?

 a. Using a general register computer with three address instructions.
 b. Using a general register computer with for address instructions.
 c. Using an accumulator type computer with on address instructions.
 d. Using a stack organized computer with zero-address operation instructions.

A Gentle Advice:
Please go through your text books and reference books for detail study!!! Thank you all.

Notes Compiled By:
Bijay Mishra
biizay.blogspot.com
9813911076 or 9841695

Downloaded from CSIT Tutor

1 | P a g e b i i z a y @ g m a i l . c o m

Unit 6 - Fixed Point Computer Arithmetic

Computer Arithmetic
Data is manipulated by using the arithmetic instructions in digital computers. The Addition,
subtraction, multiplication and division are the four basic arithmetic operations. To execute
arithmetic operations there is a separate section called arithmetic processing unit in central
processing unit. The arithmetic instructions are performed generally on binary or decimal data.
Fixed-point numbers are used to represent integers or fractions. We can have signed or
unsigned negative numbers. Fixed-point addition is the simplest arithmetic operation.

In order to solve the computational problems, arithmetic instructions are used in digital
computers that manipulate data. These instructions perform arithmetic calculations. And these
instructions perform a great activity in processing data in a digital computer. As we already
stated that with the four basic arithmetic operations addition, subtraction, multiplication and
division, it is possible to derive other arithmetic operations and solve scientific problems by
means of numerical analysis methods.

A processor has an arithmetic processor (as a sub part of it) that executes arithmetic operations.
The data type, assumed to reside in processor, registers during the execution of an arithmetic
instruction. Negative numbers may be in a signed magnitude or signed complement
representation. There are three ways of representing negative fixed point - binary numbers
signed magnitude, signed 1’s complement or signed 2’scomplement. Most computers use the
signed magnitude representation for the mantissa.

Fixed Point Computer Arithmetic 5 Hrs.
Addition and Subtraction 1.5 Hr.
Introduction
Addition and Subtraction with Signed Magnitude
Hardware Implementation
Hardware Algorithm
Addition and Subtraction with Signed 2’s Complement

Multiplication 2 Hrs.
Introduction
Hardware Implementation and Algorithm
Booth Algorithm
Array Multiplier

Division Algorithm 1.5 Hrs.
Introduction
Hardware Implementation
Overflow
Hardware Algorithm
Restoring Method
Comparison and non-restoring Method

Downloaded from CSIT Tutor

2 | P a g e b i i z a y @ g m a i l . c o m

Addition and Subtraction

Addition and Subtraction with Signed Magnitude Data
We designate the magnitude of the two numbers by A and B. Where the signed numbers are
added or subtracted, we find that there are eight different conditions to consider, depending on
the sign of the numbers and the operation performed. These conditions are listed in the first
column of table below. The other columns in the table show the actual operation to be
performed with the magnitude of the numbers.

Table: Addition and Subtraction of Signed Magnitude

The last column is needed to present a negative zero. In other words, when two equal numbers
are subtracted, the result should be +0 not -0. The algorithms for addition and subtraction are
derived from the table and can be stated as follows (the words parentheses should be used for
the subtraction algorithm).

Algorithm
When the signs of A and B are same, add the two magnitudes and attach the sign of result is that
of A. When the signs of A and B are not same, compare the magnitudes and subtract the smaller
number from the larger. Choose the sign of the result to be the same as A, if A > B or the
complement of the sign of A if A < B. If the two magnitudes are equal, subtract B from A and
make the sign of the result will be positive.

Hardware Implementation
To implement the two arithmetic operations with hardware, it is first necessary that the two
numbers be stored in registers. Let A and B be two registers that keeps the magnitudes of the
numbers, and As and Bs be two flip-flops that hold the corresponding signs. The result of the
operation may be transferred into A and As. Thus an accumulator register is formed by A and As.

Consider now the hardware implementation of the algorithm above. First, we need a parallel-
adder to perform the microoperation A + B. Second, a comparator circuit is needed to establish
whether A > B, A = B, or A > B. Third, we need two parallel-subtractor circuits to perform the

Downloaded from CSIT Tutor

3 | P a g e b i i z a y @ g m a i l . c o m

microoperations A - B and B - A. The sign relationship can be obtained from an exclusive OR gate
with As and Bs as inputs.

Hence we require a magnitude comparator, an adder, and two subtractors. But there is a
different procedure that requires less equipment. First, we know that subtraction can be
accomplished by means of complement and add. Second, the result of a comparison can be
determined from the end carry after subtraction. Careful investigation of the alternatives
suggests that the use of 2’s complement for subtraction and comparison is an efficient
procedure and we require only an adder and a complementer.

Figure: Hardware for signed magnitude addition and subtraction

The Figure above shows a block diagram of the hardware for implementing the addition and
subtraction operations. It has registers A and B and flip-flop As and Bs are used for sign. We
perform subtraction by adding A to the 2’s complement of B. The output carry is loaded into flip-
flop E, where it can be checked to discover the relative magnitudes of the two numbers. The
add-overflow flip-flop AVF contains the overflow bit for addition of A and B. The A register
provides other micro-operations that may be needed when we specify the sequence of steps in
the algorithm.

The operation A+ B is done through the parallel adder. The S (sum) output of the adder becomes
to the input of the A register. The complementer gives an output of B or the complement of B
depending or the state of the mode control M. The complement consists of XOR gates and the
parallel adder consists of full adder circuits.

The M signal is also applied to the input carry of the adder. When M = 0, the output of B is
transferred to the adder, the input carry is 0, and the output of the adder is equal to the sum A +
B. When M = 1, the 1’s complement of B is applied to the adder, the input carry is 1, and output
S = A + B + 1. This is equal to A plus the 2’s complement of B, which is equivalent to the
subtraction A – B.

Downloaded from CSIT Tutor

4 | P a g e b i i z a y @ g m a i l . c o m

Hardware Algorithm
We compare the signs of As and Bs by an exclusive-OR gate. If we get 0 output, the signs are
identical and if it is 1, the signs are different. For an add operation, identical signs dictate that
the magnitudes be added. For a subtract operation, different signs tells that the magnitudes be
added. The magnitudes are added with a microoperation EA = A + B, where EA is register that
consists of E and A. The carry in E after the addition constitutes an overflow if it is equal to 1.
The value of E is transferred into the add-overflow flipflop AVF.

Figure: Flowchart for Add and Subtract Operations

Downloaded from CSIT Tutor

5 | P a g e b i i z a y @ g m a i l . c o m

We subtract the two magnitudes if the signs are different for an add operation or identical for a
subtract operation. The magnitudes are subtracted by adding A to the 2's complement of B. No
overflow can occur if the numbers are subtracted so AVF is cleared to 0. A 1 in E tells that A > B.
and the number in A contains the correct result. If A contains a zero, the sign As, must be made
positive to avoid a negative zero.

A 0 in E indicates that A < B. For this case it is necessary to take the 2's complement of the value
in A. This operation can be done with one microoperation A + 1. However, we assume that the A
register has circuits for microoperations complement and increment, so the 2's complement is
obtained from these two microoperations.

In other paths of the flowchart, the sign of the result is the same as the sign of A, so no change in
As is required. However, when A < B, the sign of the result is the complement of the original sign
of A. It is then necessary to complement As, to obtain the correct sign. The final is found in
register A and its sign in As. The value in AVF provides an overflow indication. The final value of E
is immaterial.

Addition and Subtraction with Signed-2's Complement Data
The signed-2's complement representation of numbers together with arithmetic algorithms for
addition and subtraction. They are summarized here. The leftmost bit of a binary number
represents the sign: 0 to denote to denote positive and 1 to denote negative. If the sign bit is 1,
then we represent number in 2's complement form. Thus + 33 is represented as 00100000 and -
33 as 11011110. Note that 11011110 is the 2's complement of 00100000, and vice versa.

The addition of two numbers in signed 2's complement form by adding the numbers with the
sign bits treated the same as the other bits of the number. We discard the carry of the sign-bit
position. The subtraction consists of first taking the 2's complement of the subtrahend and then
adding it to the minuend.

When we add two numbers of n digits then the sum occupies n + 1 digits, in this case an
overflow occurs.

The effect of an overflow on the sum of two signed 2's complement numbers has been discussed
already. We can detect an overflow by inspecting the last two carries of the addition. When the
two carries are applied to an exclusive-OR gate, the overflow is detected when the output of the
gate is equal to 1.

The register configuration for the hardware implementation is given in the figure below. We call
the A register AC (accumulator) and the B register BR. The two sign bits are added or subtracted
together with the other bits in the complementer and parallel adder. The overflow flip-flop V is
set to 1 if there is an overflow. The output carry in this case is discarded.

Downloaded from CSIT Tutor

6 | P a g e b i i z a y @ g m a i l . c o m

Figure: Hardware for signed-2’s complement addition and subtraction

The algorithm for adding and subtracting two binary numbers in signed 2's complement
representation is shown in the flowchart of the figure below.

We obtain the sum by adding the contents of AC and BR (including their sign bits). The overflow
bit V is set to 1 if the exclusive OR of the last two carries is 1, otherwise it is cleared. The
subtraction operation is performed by adding the content of AC to the 2's complement of BR.
Taking the 2's complement of BR has the effect of changing a positive number to negative, and
vice versa. We have to check an overflow during this operation because the two numbers added
may have the same sign. It should be noted that if an overflow occurs, there is an erroneous
result in the AC register.

Figure: Flowchart for signed-2’s complement addition and subtraction

Downloaded from CSIT Tutor

7 | P a g e b i i z a y @ g m a i l . c o m

If we compare this algorithm with its signed-magnitude part, we note that it is much simpler to
add and subtract numbers if we keep negative numbers in signed 2's complement
representation. Therefore most computers adopt this representation over the more familiar
signed-magnitude.

Multiplication Algorithm
Multiplication of two fixed-point binary numbers in signed magnitude representation is done
with paper and pencil by a process of successive shift and add operations. This process is best
illustrated with a numerical example:

This process looks at successive bits of the multiplier, least significant bit first. If the multiplier bit
is 1, the multiplicand is copied as it is; otherwise, we copy zeros. Now we shift numbers copied
down one position to the left from the previous numbers. Finally, the numbers are added and
their sum produces the product.

Hardware Implementation for Signed Magnitude Data
When multiplication is implemented in a digital computer, we change the process slightly. Here,
instead of providing registers to store and add simultaneously as many binary numbers as there
are bits in the multiplier, it is convenient to provide an adder for the summation of only two
binary numbers, and successively accumulate the partial products in a register. Second, instead
of shifting the multiplicand to left, the partial product is shifted to the right, which results in
leaving the partial product and the multiplicand in the required relative positions. Now, when
the corresponding bit of the multiplier is 0, there is no need to add all zeros to the partial
product since it will not alter its value.

The hardware for multiplication consists of the equipment given in figure below. The multiplier
is stored in the register and its sign in Qs. The sequence counter SC is initially set bits in the
multiplier. After forming each partial product the counter is decremented. When the content of
the counter reaches zero, the product is complete and we stop the process.

Downloaded from CSIT Tutor

8 | P a g e b i i z a y @ g m a i l . c o m

Figure: Hardware for multiply operation

Hardware Algorithm
Figure below is a flowchart of the hardware multiplication algorithm. In the beginning, the
multiplicand is in B and the multiplier in Q. Their corresponding signs are in Bs and Qs
respectively.

We compare the signs of both A and Q and set to corresponding sign of the product since a
double-length product will be stored in registers A and Q.

Registers A and E are cleared and the sequence counter SC is set to the number of bits of the
multiplier. Since an operand must be stored with its sign, one bit of the word will be occupied by
the sign and the magnitude will consist of n-1 bits.

Now, the low order bit of the multiplier in Qn is tested. If it is 1, the multiplicand (B) is added to
present partial product (A), 0 otherwise. Register EAQ is then shifted once to the right to form
the new partial product. The sequence counter is decremented by 1 and its new value checked.
If it is not equal to zero, the process is repeated and a new partial product is formed. When SC =
0 we stops the process.

Downloaded from CSIT Tutor

9 | P a g e b i i z a y @ g m a i l . c o m

Figure: Flowchart for Multiply operation

Booth Multiplication Algorithm
If the numbers are represented in signed 2’s complement then we can multiply them by using
Booth algorithm. In fact the strings of 0's in the multiplier need no addition but just shifting, and
a string of 1's in the multiplier from bit weight 2k to weight 2m can be treated as 2k+1 - 2m. For
example, the binary number 001111 (+15) has a string of 1's from 23 to 20(k = 3, m = 0).

The number can be represented as 2k+1 – 2m = 24- 20= 16 - 1 = 15. Therefore, the multiplication M
x 14, where M is the multiplicand and 14 the multiplier may be computed as M x 24 - M x 21.
That is, the product can be obtained by shifting the binary multiplicand M four times to the left
and subtracting M shifted left once.

Downloaded from CSIT Tutor

10 | P a g e b i i z a y @ g m a i l . c o m

Table: Numerical Example for Binary Multiplier

Booth algorithm needs examination of the multiplier bits and shifting of the partial product.
Prior to the shifting, the multiplicand added to the partial product, subtracted from the partial
product, or left unchanged by the following rules:

1. The multiplicand is subtracted from the partial product when we get the first least
significant 1 in a string of 1's in the multiplier.

2. The multiplicand is added to the partial product when we get the first Q (provided that
there was a previous 1) in a string of 0's in the multiplier.

3. The partial product does not change when the multiplier bit is the same as the previous
multiplier bit.

The algorithm applies to both positive and negative multipliers in 2's complement
representation. This is because a negative multiplier ends with a string of 1's and the last
operation will be a subtraction of the appropriate weight.

For example, a multiplier equal to -14 is represented in 2's complement as 110010 and is treated
as -24 + 22 - 21 = -14.

The hardware implementation of Booth algorithm requires the register configuration shown in
Figure below. Qn represents the least significant bit of the multiplier in register QR. An extra flip-
flop Qn+1 is appended to QR to provide a double bit inspection of the multiplier.

Downloaded from CSIT Tutor

11 | P a g e b i i z a y @ g m a i l . c o m

Figure: Hardware for Booth Algorithm

The flowchart for Booth algorithm is shown in Figure below. AC and the appended bit Qn+1 are
initially set to 0 and the sequence counter SC is set to a number n equal to the number of bits in
the multiplier.

Figure: Flowchart for Booth Algorithm

Downloaded from CSIT Tutor

12 | P a g e b i i z a y @ g m a i l . c o m

The two bits of the multiplier in Qn and Qn+1 are inspected.

1. If the two bits are 10, it means that the first 1 in a string of 1's has been encountered.
This needs a subtraction of the multiplicand from the partial product in AC.

2. If the two bits are equal to 01. It means that the first 0 in a string of 0's has been

encountered. This needs the addition of the multiplicand to the partial product in AC.

3. When the two bits are equal, the partial product does not change. An overflow cannot
occur because the addition and subtraction of the multiplicand follow each other. Hence,
the two numbers that are added always have opposite sign, a condition that excludes an
overflow.

Next step is to shift right the partial product and the multiplier (including bit Qn+1). This is an
arithmetic shift right (ashr) operation which shifts AC and QR to the right and leaves the sign bit
in AC same. The sequence counter decrements and the computational loop is repeated n times.

A Numerical Example of Booth algorithm
A numerical example of Booth algorithm is given for n = 5. It gives the multiplication of (-9) x (-
13) = +117. Note that the multiplier in QR is negative and that the multiplicand in BR is also
negative. The 10-bit product appears in AC. The final value of Qn+1 is the original sign bit of the
multiplier and should not be taken as part of the product.

Table: Example of Multiplication with Booth Algorithm

Downloaded from CSIT Tutor

13 | P a g e b i i z a y @ g m a i l . c o m

Array Multiplier
To check the bits of the multiplier one at a time and forming partial products is a sequential
operation requiring a sequence of add and shift micro-operations. The multiplication of two
binary numbers can be done with one micro-operation by using combinational circuit that forms
the product bits all at once.
This is a fast way since all it takes is the time for the signals to propagate through the gates that
form the multiplication array. However, an array multiplier requires a large number of gates, and
so it is not an economical unit for the development of ICs.

Now we see how an array multiplier is implemented with a combinational circuit. Consider the
multiplication of two 2-bit numbers as shown in the figure below.

Figure: 2 bit by 2 bit array multiplier

The multiplicand bits are b1 and b0, the multiplier bits are a1 and a0, and the product is c3 c2 c1 c0.
The first partial product is obtained by multiplying a0 by b1b0. The multiplication of two bits gives
a 1 if both bits are 1; otherwise, it produces a 0. This is identical to an AND operation and can we
implement it with an AND gate.

As shown in the diagram, the first partial product is formed by means of two AND gates. The
second partial product is formed by multiplying a1 by b1b0 and is shifted one position to the left.
The two partial products are added with two half-adder (HA) circuits. Usually, there are more
bits in the partial products and it will be necessary to use full-adders to produce the sum.

Note that the least significant bit of the product does not have to go through an adder since it is
formed by the output of the first AND gate.

A combinational circuit binary multiplier with more bits can be constructed in a similar fashion. A
bit of the multiplier is ANDed with each bit of the multiplicand in as many levels as there are bits
in the multiplier.

Downloaded from CSIT Tutor

14 | P a g e b i i z a y @ g m a i l . c o m

The binary output in each level AND gates is added in parallel with the partial product of the
previous level to form a new partial product. The last level produces the product. For j multiplier
bits and k multiplicand bits we need (j*k) AND gates and (j - 1) k bits adders to produce a
product of j + k bits.

As a second example, consider a multiplier circuit that multiplies a binary number of four bits
with a number of three bits. Let the multiplicand be represented by b3b2b1b0 and the multiplier
by a2a1a0. Since k=4 and j=3, we need 12 AND gates and two 4-bit adders to produce a product
of seven bits. The logic diagram of the multiplier is shown in Figure below:

Figure: 4 bit by 3 bit array multiplier

Downloaded from CSIT Tutor

15 | P a g e b i i z a y @ g m a i l . c o m

Division Algorithms
Division of two fixed-point binary numbers in signed magnitude representation is performed
with paper and pencil by a process of successive compare, shift and subtract operations.

Binary division is much simpler than decimal division because here the quotient digits are either
0 or 1 and there is no need to estimate how many times the dividend or partial remainder fits
into the divisor.

The division process is described in the figure below:

Figure: Flowchart for Division Algorithm for Signed Magnitude Data

Downloaded from CSIT Tutor

16 | P a g e b i i z a y @ g m a i l . c o m

Figure: Example of Binary Division

The divisor B has five bits and the dividend A has ten. The divisor is compared with the five most
significant bits of the dividend. Since the 5-bit number is smaller than B, we again repeat the
same process.

Now the 6-bit number is greater than B, so we place a 1 for the quotient bit in the sixth position
above the dividend. Now we shift the divisor once to the right and subtract it from the dividend.
The difference is known as a partial remainder because the division could have stopped here to
obtain a quotient of 1 and a remainder equal to the partial remainder.

Comparing a partial remainder with the divisor continues the process. If the partial remainder is
greater than or equal to the divisor, the quotient bit is equal to 1. The divisor is then shifted right
and subtracted from the partial remainder.

If the partial remainder is smaller than the divisor, the quotient bit is 0 and no subtraction is
needed. The divisor is shifted once to the right in any case. Obviously the result gives both a
quotient and a remainder.

Floating Point Representation
The floating point representation of the number has two parts. The first part represents a signed
fixed point numbers called mantissa. The second part designates the position of the decimal (or
binary) point and is called exponent.

For example the decimal no +6132.789 is represented in floating point with fraction and
exponent as follows:

Fraction Exponent
+0.6132789 +04

This representation is equivalent to the scientific notation: +0.6132789 × 10+4

Downloaded from CSIT Tutor

17 | P a g e b i i z a y @ g m a i l . c o m

The floating point is always interpreted to represent a number in the following form m × re. Only
the mantissa and the exponent e are physically represented in the register (including their sign)
.The radix r and the radix point position of the mantissa are always assumed.

A floating point binary no is represented in similar manner except that it uses base 2 for the
exponent. For example the binary no +1001.11 is represented with 8 bit fraction and 0 bit
exponent as follows:

0.1001110 × 2100

Fraction Exponent
01001110 000100

The fraction has zero in the leftmost position to denote positive. The floating point number is
equivalent to m × 2e = +(0.1001110)2 × 2+4

Floating Point Arithmetic
The basic operation for floating point arithmetic are:

Floating point number Arithmetic Operations
X = Xs × BXE X+Y = (Xs × BXE-YE + Ys) × BYE
Y = Ys × BYE X-Y = (Xs × BXE-YE - Ys) × BYE

X*Y = (Xs × Ys) × BXE+YE
X/Y = (Xs / Ys) × BXE-YE

For addition and subtraction it is necessary to ensure that both operands have same exponent
value. This may require shifting the radix point on one of the operands to achieve alignment.
Multiplication and division are both more straight forwards.

The exponent may be represented in biased exponent in this representation, the sign bit is
remove from being separate entity. The bias is a positive no i.e. added to the each exponent as
floating point no is formed so that internally all exponents are positive. Consider an exponent
that ranges form - 50 to 49. It is represented in registers as positive nos. in the range of 0 to 99.

The register organization for floating point operation is shown in figure below.

Figure: Register for floating point arithmetic operation

Downloaded from CSIT Tutor

18 | P a g e b i i z a y @ g m a i l . c o m

There are two registers BR and AC, each register is subdivided into 2 parts. The mantissa has the
uppercase letters symbols and the exponent part uses corresponding lowercase letters symbol.
It is assumed that each floating no has mantissa in sign magnitude representation and biased
exponent.

Note that the symbol AC represents the entire register that is concatenation of “As”, “A” and “a”
similarly register BR is subdivide into “BS”, “B” and “b” and QR into “Qs”, “Q” and q””.

A parallel adder adds the 2 mantissa and transfer the sum into A and carry into E, a separate
parallel adder is used for exponent.

Addition and Subtraction:
During addition and subtraction two floating point operands are in AC and BR. The sums or
difference is formed in the AC. The algorithm can be divide into 4 consecutive parts.
1. Check for zeroes.
2. Align the mantissa.
3. Add or subtract the mantissa.
4. Normalize the result.

Multiplication:
The multiplication can be subdivided into 4 parts.
1. Check for zeroes.
2. Add the exponents.
3. Multiply mantissa.
4. Normalize the product.

Division:
The division algorithm can be subdivided into 5 parts.
1. Check for zeroes.
2. Initial registers and evaluate the sign.
3. Align the dividend.
4. Subtract the exponent.
5. Divide the mantissa.

References:
1. M. Morris Mano, “Computer System Architecture”, Pearson, 3rd Ed, 2004.
2. M. Morris Mano, “Logic and Computer Design Fundamentals”, Pearson Education, 2nd

Edition

Assignments:
1. Perform the arithmetic operations with binary numbers given below and with negative

numbers in signed 2’s complement representation. Use seven bits to accommodate each
number together with its sign.

 a. (+ 15) + (+ 14)
 b. (- 15) + (- 14)
 c. (- 15) + (+ 14)
2. Describe the hardware algorithm for addition with an example.

Downloaded from CSIT Tutor

19 | P a g e b i i z a y @ g m a i l . c o m

3. Multiply the following numbers using Booth Multiplication algorithm (show all steps)
 a. + 14 * – 13
 b. - 14 * + 13
 Use 5-bit registers
4. Design a 2-bit multiplier by 3 bit array multiplier.
5. Explain the booth algorithm with example. (T.U. 2066)
6. Explain the subtraction algorithm with signed 2’s compliment. (T.U. 2067)
7. Explain the non-restoring Division algorithm, flow chart hardware implementation with

example. (T.U. 2067, 2069)
8. Explain the Booth algorithm. Multiply 3 x 5 using booth algorithm. (T.U. 2068)
9. Explain the restoring division algorithm with example. (T.U. 2068)
10. Show the steps of multiplication process using Booth algorithm for the following: Y = 8 X 10

(T.U. 2070)
11. Write short notes on the following:

a. Array Multiplier (T.U. 2069)

A Gentle Advice:
Please go through your text books and reference books for detail study!!! Thank you all.

Notes Compiled By:
Bijay Mishra
biizay.blogspot.com
9813911076 or 9841695609

Downloaded from CSIT Tutor

1 | P a g e b i i z a y @ g m a i l . c o m

Unit 7 - Input and Output Organization

Peripheral Devices
The Input/output subsystem of a computer, referred to as I/O, provides an efficient mode of
communication between the central system and the output environment. External devices that
are under the direct control of the computers are said to be connected on-line. These devices are
designed to read information into or out of the memory unit upon command from the CPU and
are considered to be part of the computer system. Input/output devices attached to the computer
are also called peripherals.

Devices are said to be connected online that are under the direct control of the computer. These
devices are designed to read information into or out of the memory unit when the CPU gives a
command.

Input or output devices connected to the computer are also called peripherals. Among the most
common peripherals are keyboards, display units and printers. Peripherals that provide auxiliary
storage for the system are magnetic disks. Other input and output devices are digital incremental
plotters, optical and magnetic character readers, analog-to-digital converters etc.

Input and Output Organization 6 Hrs.
Introduction to Peripheral Devices 0.5 Hr.
I/O Subsystem and Peripherals

I/O Interface 1.5 Hr.
Interface I/O Bus and Interface Module
Types of I/O Commands
I/O and Memory Bus
Isolated I/O
Memory Mapped I/O
I/O Interface Unit

Direct Memory Access (DMA) 1.5 Hr.
Types of I/O, DMA, DMA Transfer

I/O Processor 1 Hr.
I/O Processing
CPU-IOP Communication

Data Communication Processor 1.5 Hr.
Serial and Parallel Communication
Data Communication Processor
Modes of Data Transfer

Downloaded from CSIT Tutor

2 | P a g e b i i z a y @ g m a i l . c o m

Figure: Block Diagram of a Microcomputer System

Input-Output Interface
Input-output interface gives a method for transferring information between internal memory and
I/O devices. Peripherals connected to a computer require special communication links for
interfacing them with the central processing unit. The purpose of the communication link is to
resolve the differences that exist between the central computer and each peripheral.

The major differences are:

1. Peripherals are electromechanical and electromagnetic devices and their manner of
operation is different from the operation of the CPU and memory, which are electronic
devices. Therefore a conversion of signal values may be required

2. The data transfer rate of peripherals is usually slower than the transfer rate of the CPU.
3. Data codes and formats in peripherals differ from the word format in the CPU and memory.
4. The operating modes of peripherals are different from each other.

Downloaded from CSIT Tutor

3 | P a g e b i i z a y @ g m a i l . c o m

I/O Bus and Interface Modules
A communication link between the processor and several peripherals is represented the following
figure below. The I/O bus is made of data lines, address lines and control lines.

Figure: Connection of I/O Bus to I/O Devices

The magnetic disk, printer and terminal are used in any general-purpose computer. The magnetic
tape is used in computers for backup storage. Each peripheral device associated with it by
interface unit. Each interface decodes the address and control received from the I/O bus,
interprets them for the peripheral and provides signals for the peripheral controller. It also
synchronizes the data flow and supervises the transfer between peripheral and processor.

Each peripheral has its own controller that operates the particular electromechanical device. For
example, the printer controller controls the paper motion, the print timing and the selection of
printing characters. A controller may be housed separately or may be physically integrated with
the peripheral.

The I/O bus from the processor is attached to all peripheral interfaces. To communicate with a
particular device, the processor places a device address on the address lines. Each interface
attached to the I/O bus contains an address decoder that monitors the address lines. When the
interface detects its own address, it activates the path between the bus lines and the device that it
controls. All peripherals whose address does not correspond to the address in the bus are disabled
by their interface.

The address is made available in the address lines and the processor provides a function code in
the control lines. The interface selected responds to the function code and proceeds to execute it.
The function code is referred to as an I/O command and is in essence an instruction that is
executed in the interface and is attached in the peripheral unit. The interpretation of the
command depends on the peripheral that the processor is addressing. There are four types of
commands that an interface may receive. They are classified as control, status, data output and
data input.

Downloaded from CSIT Tutor

4 | P a g e b i i z a y @ g m a i l . c o m

We issue a control command to activate the peripheral. The particular control command issued
depends on the peripheral. Each peripheral receives its own distinguished sequence of control
commands, depending on its mode of operation.

We use a status command to test various status conditions in the interface and the peripheral. For
example, the computer may wish to check the status of the peripheral before a transfer is
initiated. During the transfer, one or more errors may occur which are detected by the interface.

A data output command causes the interface to respond by transferring data from the bus into
one of its registers. Consider an example with a tape unit. The computer starts the tape moving by
issuing a control command. Now the processor monitors the status of the tape by means of a
status command.

By giving the data input command the interface receives an item of data from the peripheral and
places it in its buffer register. The processor checks if data are available by means of a status
command and then issues a data input command. The interface places the data on the data lines,
and the processor accepts data.

I/O versus Memory Bus
To communicate with I/O, the processor must communicate with the memory unit. The memory
bus contains data, address and read/write control lines. There are three ways to use computer
buses to communicate with memory and I/O:

1. Use two separate buses, one for the memory and the other for I/O.
2. Use one common bus for both memory and I/O but have separate control lines for each.
3. Use one common bus for memory and I/O with common control lines.

In the first method, the computer has independent sets of data, address and control buses, one
for accessing memory and the other for I/O. This is done in computers having a separate I/O
processor (IOP) in addition to the central processing unit (CPU). The memory communicates with
both the CPU and the IOP using a memory bus.

The IOP also communicates with the input and output devices through a separate I/O bus with its
own address, data and control lines. The purpose of the IOP is to provide an independent pathway
for the transfer of information between external devices and internal memory.

Isolated versus Memory-Mapped I/O
One common bus may be employed to transfer information between memory or I/O and the CPU.
Memory transfer and I/O transfer differs in that they use separate read and write lines. The CPU
specifies whether the address on the address lines is for a memory word or for an interface
register by enabling one of two possible read or write lines.

The I/O read and I/O write control lines are enabled during an I/O transfer. The memory read and
memory write control lines are enabled during a memory transfer. This configuration isolates all
I/O interface addresses from the addresses assigned to memory and is referred to as the isolated
I/O method for assigning addresses in a common bus.

Downloaded from CSIT Tutor

5 | P a g e b i i z a y @ g m a i l . c o m

Example of I/O Interface
The figure below shows an example of an I/O interface unit is shown in block diagram.

Figure: Example of I/O Interface Unit

It has two data registers called ports, a control register, a status register, bus buffers, and timing
and control circuits. The interface communicates with the CPU through the data bus. The chip
select and register select inputs determine the address assigned to the interface. The I/O read and
write are two control lines that specify an input or output, respectively. The four registers
communicate directly with the I/O device attached to the interface.

The input-output data to and from the device can be transferred into either port A or port B. The
interface may operate with an output device or with an input device, or with a device that
requires both input and output. If the interface is connected to a printer, it will only output data,
and if it services a character reader, it will only input data. A magnetic disk unit is used to transfer
data in both directions but not at the same time, so the interface can use bi-directional lines. A
command is passed to the I/O device by sending a word to the appropriate interface register. In a
system like this, the function code in the I/O bus is not needed because control is sent to the
control register, status information is received from the status register, and data are transferred
to and from ports A and B registers. Thus the transfer of data, control, and status information is
always via the common data bus. The distinction between data, control, or status information is
determined from the particular interface register with which the CPU communicates.

Downloaded from CSIT Tutor

6 | P a g e b i i z a y @ g m a i l . c o m

The control register gets control information from the CPU. By loading appropriate bits into the
control register, the interface and the I/O device attached to it can be placed in a variety of
operating modes. For example, port A may be defined as an input port and port B as an output
port. A magnetic tape unit may be instructed to rewind the tape or to start the tape moving in the
forward direction. The bits in the status register are used for status conditions and for recording
errors that may occur during the data transfer. For example, a status bit may indicate that port-A
has received a new data item from the I/O device.

The interface registers uses bi-directional data bus to communicate with the CPU. The address bus
selects the interface unit through the chip select and the two register select inputs. A circuit must
be provided externally (usually, a decoder) to detect the address assigned to the interface
registers. This circuit enables the chip select (CS) input to select the address bus. The two register
select-inputs RS1 and RS0 are usually connected to the two least significant lines of the address
bus. Those two inputs select one of the four registers in the interface as specified in the table
accompanying the diagram. The content of the selected register is transfer into the CPU via the
data bus when the I/O read signal is ended. The CPU transfers binary information into the selected
register via the data bus when the I/O write input is enabled.

Asynchronous Data Transfer
The internal operations in a digital system are synchronized using a common pulse generator.
Clock pulses are used by all registers within a unit and all data transfers among internal registers
occur simultaneously during the occurrence of a clock pulse. Two units, such as a CPU and an I/O
interface, are independent of each other. If the registers in the interface a common clock with the
clock registers, the transfer between the two units is said to be synchronous. In most cases, the
internal timing in each unit is independent from the other in that each uses its own private clock
for internal registers. Hence, the two units are said to be asynchronous to each other. This
approach is widely used in most computer systems.

Strobe Control
The strobe control method uses a single control line to time each transfer. We can activate the
strobe by either the source or the destination unit. The figure (a) below shows a source-initiated
transfer.

The data bus is used to carry the binary information from source unit to the destination unit.
Usually, the bus has multiple lines to transfer an entire byte or word. The strobe is a single line
that informs the destination unit when a valid data word is available in the bus.

It is clear from figure (b), that the source unit first places the data on the data bus. After a brief
delay to ensure that the data settle to a steady value, the source activates the strobe pulse. The
information on the data bus and the strobe signal do not change in the active state for a sufficient
time period to allow the destination unit to receive the data. Often, the destination unit uses the
falling edge of the strobe pulse to transfer the contents of the data bus into one of its internal
registers. The source removes the data from the bus a brief period after it disables its strobe
pulse. Actually, the source does not have to change the information in the data bus. The fact that
the strobe signal is disabled indicates that the data bus does not have valid data. New valid data
will be available only after the strobe is enabled again.

Downloaded from CSIT Tutor

7 | P a g e b i i z a y @ g m a i l . c o m

Figure: Source-initiated strobe for data transfer

The figure below describe a data transfer initiated by the destination unit.

Figure: Destination-initiated strobe for data transfer

In this case the destination unit activates the strobe pulse, informing the source to provide the
data. The source unit responds by putting the requested binary information on the data bus.

The data should be valid and remain in the bus long enough for the destination unit to accept it.
We can use the falling edge of the strobe pulse again to trigger a destination register. The
destination unit then disables the strobe. The source removes the data from the bus after a
predetermined time interval.

Downloaded from CSIT Tutor

8 | P a g e b i i z a y @ g m a i l . c o m

Handshaking
The strobe method has a disadvantage that the source unit that initiates the transfer has no
method of knowing whether the destination unit has actually received the data item that was
placed in the bus. Similarly, a destination unit that initiates the transfer has no way of knowing
whether the source unit has actually placed the data on the bus.

The handshake method solves this problem by introducing a second control signal that provides a
reply to the unit that initiates the transfer. The principle of the two-wire handshaking method of
data transfer is as follows. One control line is in the same direction as the data low in the bus from
the source to the destination. It is used by the source unit to inform the destination unit whether
there are valid data in the bus. The other control line is in the other direction from the destination
to the source. It is used by the destination unit to inform the source whether it can accept data.
The sequence of control during the transfer depends on the unit that initiates the transfer.

The figure below shows the data transfer procedure when source begins it. The two handshaking-
lines are data valid, which is generated by the source unit, and data accepted, generated by the
destination unit.

The timing-diagram below describes the exchange of signals between the two units.

The sequence of events listed in part (c) shows the four possible states that the system can be at
any given time.

Downloaded from CSIT Tutor

9 | P a g e b i i z a y @ g m a i l . c o m

The source unit initiates the transfer by placing the data on the bus and enabling its data-valid
signal. The data-accepted signal is activated by the destination unit after it accepts the data from
the bus. The source unit then disables its data valid signal, which invalidates the data on the bus.
The destination unit then disables its data accepted signal and the system goes into its initial state.
The source does not send the next data item until after the destination unit shows its readiness to
accept new data by disabling its data accepted signal. So arbitrary delays are allowed from one
state to the next, which permits each unit to respond at its own data transfer rate. However, the
rate of transfer is determined by the slowest unit.

The destination-initiated transfer using handshaking-lines is shown in the figure below:

Downloaded from CSIT Tutor

10 | P a g e b i i z a y @ g m a i l . c o m

Figure: Destination-initiated transfer using handshake

Asynchronous Serial Transfer
We can transfer the data between two units in parallel or serial. In parallel data transmission,
each bit has its own path and the total message is transmitted at the same time. In serial data
transmission, each bit is sent in sequence one at a time. This method requires the use of one pair
of conductors or one conductor and a common ground. Parallel transmission is faster but requires
many wires. So we use it for short distances and where speed is important. Serial transmission is
slower but is less expensive.

Serial transmission can be synchronous or asynchronous. In synchronous transmission, the two
units share a common clock frequency and bits are transmitted continuously at the rate dictated
by the clock pulses.

Downloaded from CSIT Tutor

11 | P a g e b i i z a y @ g m a i l . c o m

A serial asynchronous data transmission technique used in many interactive terminals employs
special bits that are inserted at both ends of the character code. With this technique, each
character consists of three parts: a start bit, the character bits, and stop bits. The convention is
that the transmitter rests at the 12-state when no characters are transmitted. The first bit, called
the start bit, is always a 0 and is used to indicate the beginning of a character. The last bit, called
the stop bit is always a 1.

An example of this format is shown in the figure below:

Figure: Asynchronous serial transmission

Receiver can detect a transmitted character from knowledge of the transmission rules:

1. When a character is not being sent, the line is in the state 1.
2. The initiation of a character transmission is detected from the start bit, which is always 0.
3. The character bits always follow the start bit.
4. After the last bit of the character is transmitted, a stop bit is detected when the line

returns to the 1-state for at least one bit time.

Asynchronous Communication Interface
The interface is initialized for a particular mode of transfer by means of a control byte that is
loaded into its control register. The transmitter register accepts a data byte from the CPU through
the data bus. This byte is transferred to a shift register for serial transmission. The receiver portion
receives serial information into an- other shift register, and when a complete data byte is
accumulated, it is transferred to the receiver register.

The CPU can select the receiver register to read the byte through the data bus. The bits in the
status register are used for input and output flags and for recording certain errors that may occur
during the transmission. The CPU can read the status register to check the status of the flag bits
and to determine if any errors have occurred. The chip select and the read and write control lines
communicate with the CPU. The chip select (CS) input is used to select the interface through the
address bus. The register select (RS) is associated with the read (RD) and write (WR) controls. Two
registers are write-only and two are read-only. The register selected is a function of the RS value
and the RD and WR status, as listed in the table accompanying the diagram.

The figure below shows the block diagram of an asynchronous communication. It acts as both a
transmitter and a receiver.

Downloaded from CSIT Tutor

12 | P a g e b i i z a y @ g m a i l . c o m

Figure: Block diagram of a typical asynchronous communication interface

Modes of Transfer
Binary information received from an external device is usually stored in memory. Information
transferred from the central computer into an external device initiates in the memory unit. The
CPU only executes the I/O instructions and may accept the data temporarily, but the ultimate
source or destination is the memory unit. Data transfer between the central computer and I/O
devices may be handled in a variety of modes. Some modes use the CPU as an intermediate path;
others transfer the data directly to and from the memory unit.

Data transfer to and from peripherals may be done in either of three possible modes:

1. Programmed I/O
2. Interrupt-initiated I/O
3. Direct memory access (DMA)

Downloaded from CSIT Tutor

13 | P a g e b i i z a y @ g m a i l . c o m

Programmed I/O
In this method, the I/O device does not have direct access to memory. A transfer has I/O device to
memory needs the execution of several instruction, input CPU, including an input instruction to
transfer the data from the device CPU and a store instruction to transfer the data from the CPU to
memory instruction may be needed to verify that the data are available from the source and to
count the numbers of words transferred.

The figure below shows data transfer from an I/O device through an interface into the CPU. The
device transfers bytes of data one at a time, as they are available. When a byte of data is available,
the device places it in the I/O bus and enables its data valid line. The interface accepts the byte
into its data register and enables the data accepted line. The interface sets a bit in the status
register that we will refer to as a "flag" bit. The device can now disable the data valid line, but it
will not transfer another byte until the data accepted line is disabled.

Figure: Data transfer form IO device to CPU

A program is written to check the flag in the status register to determine if a byte has been placed
in the data register by the I/O device. This can be done by reading the status register into a CPU
register and checking the value of the flag bit. If the flag is equal to 1, the CPU reads the data from
the data register. The flag-bit is then cleared to 0 by either the CPU or by the interface, depending
on how the interface circuits are designed. Once the flag is cleared, the interface disables the data
accepted line and the device can then transfer the next data byte.

A flowchart of the program is shown in the figure below. It is assumed that the device is sending a
sequence of bytes that must be stored in memory. The transfer of each byte needs three
instructions:

1. Read the status register.
2. Check the status of the flag bit and branch to step I if not set or to step if set.
3. Read the data register.

A CPU register read each byte and then transferred to memory with a store instruction. I/O
programming task is to transfer a block of words from an I/O device and store them in a memory
buffer.

Downloaded from CSIT Tutor

14 | P a g e b i i z a y @ g m a i l . c o m

Figure: Flowchart for CPU program to input data

This method is used in small low-speed computers or in systems that are dedicated to monitor a
device continuously. The difference in information transfer rate between the CPU and the I/O
device makes this type of transfer inefficient.

Interrupt-Initiated I/O
Another way of constantly monitoring the flag is to let the interface inform the computer when it
is ready to transfer data. This mode of transfer uses the interrupt facility. While the CPU is running
a program, it does not check the flag. However, when the flag is set, the computer is momentarily
interrupted from proceeding with the current program and is informed of the fact that the flag has
been set. The CPU deviates from what it is doing to take care of the input or output transfer.

Downloaded from CSIT Tutor

15 | P a g e b i i z a y @ g m a i l . c o m

The CPU responds to the interrupt signal by storing the return address from the program counter
into a memory stack and then control branches to a service routine that processes the required
I/O transfer. The way that the processor chooses the branch address of the service routine varies
from one unit to another. In principle, there are two methods for accomplishing this. One is called
vectored interrupt and the other, non-vectored interrupt. In a non-vectored interrupt, the branch
address is assigned to a fixed location in memory. In vectored interrupt, the source that interrupts
supplies the branch information to the computer. This information is called the interrupt vector. In
some computers the interrupt vector is the first address of the I/O service routine. In other
computers the interrupt vector is an address that points to a location in memory where the
beginning address of the I/O service routine is stored.

Priority Interrupt
A priority interrupt is a system that establishes a priority to decide which condition is to be
serviced first when two or more requests arrive simultaneously. The system may also determine
which conditions are permitted to interrupt the computer while another interrupt is being
serviced. Higher-priority interrupt levels are assigned to requests, which if delayed or interrupted,
could have serious consequences. Devices with high- speed transfers are given high priority, and
slow devices receive low priority. When two devices interrupt the computer at the same time, the
computer services the device, with the higher priority first. Establishing the priority of
simultaneous interrupts can be done by software or hardware.

We can use a polling procedure to identify the highest-priority source by the software means.
There is one common branch address for all interrupts. The program that takes care of interrupts
begins at the branch address and polls the interrupt sources in sequence. The order in which they
are tested determines the priority of each interrupt. We test the highest-priority source first, and
if its interrupt signal is on, control branches to a service routine for this source. Otherwise, the
next-lower priority source is tested, and so on. Thus the initial service routine interrupts consists
of a program that tests the interrupt sources in sequence and branches to one of many possible
service routines. The particular service routine reached belongs to the highest-priority device
among all devices that interrupted the computer.

Example: Daisy-Chaining Priority, Parallel Priority Interrupt, etc.

Direct Memory Access (DMA)
We can transfer data direct to and from memory without the need of the CPU. The transfer of
data between a fast storage device such as magnetic disk and memory is often limited by the
speed of the CPU. Removing the CPU from the path and letting the peripheral device manager the
memory buses directly would improve the speed of transfer. This transfer technique is called
direct memory access (DMA). During DMA transfer, the CPU is idle and has no control of the
memory buses. A DMA controller takes over the buses to manage the transfer directly between
the I/O device and memory.

The CPU may be in an idle state in a variety of ways. One common method extensively used in
microprocessors is to disable the buses through special control signals. Figure below shows two
control signals in the CPU that facilitate the DMA transfer.

Downloaded from CSIT Tutor

16 | P a g e b i i z a y @ g m a i l . c o m

Figure: CPU bus signal for DMA Controller

The bus request (BR) input is used by the DMA controller to request the CPU to relinquish control
of the buses. When this input is active, the CPU terminates the execution of the current
instruction and places the address bus, the data bus, and the read and write lines into a high-
impedance state. The high-impedance state behaves like an open circuit, which means that the
output is disconnected and does not have logic significance.

The CPU activates the bus grant (BG) output to inform the external DMA that the buses are in the
high-impedance state. The DMA that originated the bus request can now take control of the buses
to conduct memory transfers without processor intervention. When the DMA terminate the
transfer, it disables the bus request line. The CPU disables the bus grant, takes control of the
buses, and returns to its normal operation.

DMA communicates directly with the memory, when it takes control of the bus system. We can
transfer in several ways. In DMA burst transfer, a block sequence consisting of a number of
memory words is transferred in a continuous burst while the DMA controller is master of the
memory buses. This mode of transfer is needed for fast devices such as magnetic disks where data
transmission cannot be stopped or slowed down until an entire block is transferred.

An alternative technique called cycle stealing allows the DMA controller to transfer one data word
at a time, after which it must return control of the buses to the CPU. The CPU merely delays its
operation for one memory cycle to allow the direct memory I/O transfer to "steal" one memory
cycle.

DMA Controller
The DMA controller requires the usual circuits of an interface to communicate with the CPU and
an I/O device. It also needs an address register, and count register, and a set of address lines. The
address register and address line are used for direct communication with the memory. The word
count register specifies the number of words that must be transferred. The data transfer may be
done directly between the device and memory under control of the DMA.

The unit can communicate with the CPU via the data bus and control lines. The registers in the
DMA are selected by the CPU through the address bus by enabling the DS (DMA select) and RS
(register select) inputs. The RD (read) and WR (write) inputs are bi-directional.

Downloaded from CSIT Tutor

17 | P a g e b i i z a y @ g m a i l . c o m

When the BG=0, the CPU can communicate with the DMA registers through the data bus to read
from or write to the DMA registers. When BG = 1, the CPU has relinquished the buses and the
DMA can communicate directly with the memory by specifying an address in the address bus and
activating the RD or WR control. The DMA communicates with the external peripheral through the
request and acknowledge lines by using a prescribed handshaking procedure.

Figure: Block diagram of DMA controller

The DMA controller consists of three registers namely an address register, a word count register,
and a control register.

The address register contains an address to specify the desired location in memory. The address
bits go through bus buffers into the address bus. The address register is incremented after each
word that is transferred to memory.

The word count register holds the number of words to be transferred. This register is
decremented by one after each word transfer and internally tested for zero.

The control register specifies the mode of transfer. All registers in the DMA appear to the CPU as
I/O interface registers. Thus the CPU can read from or write into the DMA registers under program
control via the data bus.

CPU first initializes the DMA. Then the DMA starts and continues to transfer data between
memory and peripheral unit until an ending block is transferred. The initialization process is
essentially a program consisting of I/O instructions that include the address for selecting particular
DMA registers.

Downloaded from CSIT Tutor

18 | P a g e b i i z a y @ g m a i l . c o m

The CPU initializes the DMA by sending the following information through the data bus:
1. The starting address of the memory block where data are available (for read) or where

data are to be stored (for write)
2. The word count, which is the number of words in the memory block
3. Control to specify the mode of transfer such as read or write
4. A control to start the DMA transfer

The starting address is stored in the address register. The word count is stored in the word count
register, and the control information in the control register

DMA Transfer

Figure: DMA Transfer

The figure above shows the position of the DMA controller among the other components in a
computer system. The CPU communicates with the DMA through the address and data buses as
with any interface unit. The DMA has its own address, which activates the DS and RS lines. The
CPU initializes the DMA through the data bus. Once the DMA receives the start control command,
it can start the transfer between the peripheral device and the memory.

Downloaded from CSIT Tutor

19 | P a g e b i i z a y @ g m a i l . c o m

The DMA controller activates the BR line, when the peripheral device sends a DMA request,
informing the CPU to relinquish the buses. The CPU responds with its BG line, informing the DMA
that its buses are disabled. The DMA then puts the current value of its address register into the
address bus, initiates the RD or WR signal, and sends a DMA acknowledge to the peripheral
device. Note that the RD and WR lines in the DMA controller are bi-directional. The direction of
transfer depends on the status of the BG line. When BG =0, the RD and WR are input lines allowing
the CPU to communicate with the internal DMA registers. When BG = 1, the RD and WR are
output lines from the DMA controller to the random-access memory to specify the read or write
operation for the data.

When the peripheral device gets a DMA acknowledge, it puts a word in the data bus (for write) or
receives a word from the data bus (for read). Thus the DMA controls the read or write operations
and supplies the address for the memory. The peripheral unit can then communicate with
memory through the data bus for direct transfer between the two units while the CPU is
momentarily disabled.

The DMA increments its address-register and decrements its word count-register, for each word
that is transferred. If the word count does not reach zero, the DMA checks the request line coming
from the peripheral. For high-speed device, the line will be active as soon as the previous transfer
completed. A second transfer is then initiated, and the process continues until the entire block is
transferred. If the peripheral speed is slower, the DMA request line may come somewhat later. In
this case the DMA disables the bus request line so that the CPU can continue to execute its
program. When the peripheral requests a transfer, the DMA requests the buses again.

If the word count register reaches zero, the DMA stops any further transfer and removes its bus
request. It also informs the CPU of the termination by means of an interrupt. When the CPU
responds to the interrupt, it reads the content of the word count register. The zero value of this
register indicates that all the words were transferred successfully. The CPU can read this register
at any time to check the number of words already transferred.

DMA transfer is very useful. It is used for fast transfer of information between magnetic disks and
memory. It is also useful for updating the display of the terminal is kept in memory, which can be
updated under program control.

Input-Output Processor (IOP)
A computer may incorporate one or more external processors and assign them the task of
communicating directly with all I/O devices. An input-output processor (IOP) may be classified as a
processor with direct memory access capability that communicates with I/O devices. In this
configuration, the computer system can be divided into a memory unit, and a number of
processors comprised of the CPU and one or more IOPs. Each IOP takes care of input and output
tasks, relieving the CPU from the housekeeping chores involved in I/O transfers.

The IOP is similar to a CPU except that it is designed to handle the details of I/O processing. Unlike
the DMA controller that must be set up entirely by the CPU, the IOP can fetch and execute its own

Downloaded from CSIT Tutor

20 | P a g e b i i z a y @ g m a i l . c o m

instructions. IOP instructions are specially designed to facilitate I/O transfers. In addition, the IOP
can perform other processing tasks, such as arithmetic, logic, branching, and code translation.

The block diagram of a computer with two processors is shown in figure below. The memory unit
occupies a central position and can communicate with each processor by means of direct memory
access. The CPU is responsible for processing data needed in the solution of computational tasks.
The IOP provides a path for transfer of data between various peripheral devices and the memory
unit.

Figure: Block diagram of a computer with I/O Processor

The data formats of peripheral devices differ from memory and CPU data formats. The IOP must
structure data words from many different sources. For example, it may be necessary to take four
bytes from an input device and pack them into one 32-bit word before the transfer to memory.
Data are gathered in the IOP at the device rate and bit capacity while the CPU is executing its own
program. After the input data are assembled into a memory word, they are transferred from IOP
directly into memory by "stealing" one memory cycle from the CPU. Similarly, an output word
transferred from memory to the IOP is directed from the IOP to the output device at the device
rate and bit capacity.

The communication between the IOP and the devices attached to it is similar to the program
control method of transfer. The way by which the CPU and IOP communicate depends on the level
of sophistication included in the system. In most computer systems, the CPU is the master while
the IOP is a slave processor. The CPU is assigned the task of initiating all operations, but I/O
instructions are execute in the IOP. CPU instructions provide operations to start an I/O transfer
and also to test I/O status conditions needed for making decisions on various I/O activities. The
IOP, in turn, typically asks for CPU attention by means of an interrupt. It also responds to CPU
requests by placing a status word in a prescribed location in memory to be examined later by a
CPU program. When an I/O operation is desired, the CPU informs the IOP where to find the I/O
program and then leaves the transfer details to the IOP.

Instructions that are read from the memory by an IOP are sometimes called commands, to
distinguish them from instructions that are read by the CPU.

Downloaded from CSIT Tutor

21 | P a g e b i i z a y @ g m a i l . c o m

CPU-IOP Communication
The sequence of operations may be carried out as shown in the flowchart of figure below.

Figure: CPU-IOP Communication

Downloaded from CSIT Tutor

22 | P a g e b i i z a y @ g m a i l . c o m

There are many form of the communication between CPU and IOP. These are depending on the
particular computer considered. In most cases the memory unit acts as a message center where
each processor leaves information for the other. To appreciate the operation of a typical IOP, we
will illustrate by a specific example the method by which the CPU and IOP communicate. This is a
simplified example that omits many operating details in order to provide an overview of basic
concepts.

The CPU sends an instruction to test the IOP path. The IOP responds by inserting a status word in
memory for the CPU to check. The bits of the status word indicate the condition of the IOP and I/O
device, such as IOP overload condition, device busy with another transfer, or device ready for I/O
transfer. The CPU refers to the status word in memory to decide what to do next. If all is in order,
the CPU sends the instruction to start I/O transfer. The memory address received with this
instruction tells the IOP where to find its program.

The CPU can now continue with another program while the IOP is busy with the I/O program. Both
programs refer to memory by means of DMA transfer. When the IOP terminates the execution of
its program, it sends an interrupt request to the CPU. The CPU responds to the interrupt by issuing
an instruction to read the status from the IOP. The IOP responds by placing the contents of its
status report into a specified memory location.

The IOP takes care of all data transfers between several I/O units and the memory while the CPU is
processing another program. The IOP and CPU are competing for the use of memory, so the
number of devices that can be in operation is limited by the access time of the memory.

Serial Communication
A data communication processor (DCP) is an I/O processor that distributes and collects data from
many remote terminals connected through telephone and other communication lines. It is a
specialized I/O processor designed to communicate directly with data communication networks. A
communication network may consist of any of a wide variety of devices, such as printers,
interactive display devices, digital sensors, or a remote computing facility. With the use of a data
communication processor, the computer can service fragments of each network demand in an
interspersed manner and thus have the apparent behavior of serving many users at once. In this
way the computer is able to operate efficiently in a time-sharing environment.

The main difference between an I/O processor and a data communication processor is in the way
the processor communicates with the I/O devices. An I/O processor communicates with the
peripherals through a common I/O bus that is comprised of many data and control lines. All
peripherals share the common bus and use it to transfer information to and from the I/O
processor. A data communication processor communicates with each terminal through a single
pair of wires. Both data and control information are transferred in a serial fashion with the result
that the transfer rate is much slower. The task of the data communication processor is to transmit
and collect digital information to and from each terminal, determine if the information is data or
control and respond to all requests according to predetermined established procedures. The
processor, obviously, must also communicate, with the CPU and memory in the same manner as
any I/O processor.

Downloaded from CSIT Tutor

23 | P a g e b i i z a y @ g m a i l . c o m

Synchronous transmission does not use start-stop bits to frame characters and therefore makes
more efficient use of the communication link. High-speed devices use synchronous transmission to
realize this efficiency. The modems used in synchronous transmission have internal clocks that are
set to the frequency that bits are being transmitted in the communication line. For proper
operation, it is required that the clocks in the transmitter and receiver modems remain
synchronized at all times. The communication line, however, contains only the data bits from
which the clock information must be extracted. Frequency synchronization is achieved by the
receiving modem from the signal transitions that occur in the received data. Any frequency shift
that may occur between the transmitter and receiver clocks is continuously adjusted by
maintaining the receiver clock 'at the frequency of the incoming bit stream. The modem transfers
the received data together with the clock to the interface unit.

Contrary to asynchronous transmission, where each character can be sent separately with its own
start and stop bits, synchronous transmission must send a continuous message in order to
maintain synchronism. The message consists of a group of bits transmitted sequentially as a block
of data. The entire block is transmitted with special control characters at the beginning and end of
the block. The control characters at the beginning of the block supply the information needed to
separate the incoming bits into individual characters. In synchronous transmission, where an
entire block of characters is transmitted, each character has a parity bit for the receiver to check.
After the entire block is sent, the transmitter sends one more character as a parity over the length
of the message.

Data can be transmitted between two points in three different modes - simplex, half-duplex, and
full duplex.

A simplex line carries information in one direction only. This mode is seldom used in data
communication because the receiver cannot communicate with the transmitter to indicate the
occurrence of errors. Examples of simplex transmission are PC to Printer, radio and television
broadcasting.

A half-duplex transmission system is one that is capable of transmitting in both directions but data
can be transmitted in only one direction at a time. A pair of wires is needed for this mode.
Example: Walkie-Talkie.

A full-duplex transmission can send and receive data in both directions simultaneously. This can
be achieved by means of a four-wire link, with a different pair of wires dedicated to each direction
of transmission. Example: Telephone, Mobile Phones, etc.

The communication lines, modems, and other equipment used in the transmission of information
between two or more stations is called a data link. The orderly transfer of information in a data
link is accomplished by means of a protocol. A data link control protocol is a set of rules that are
followed by interconnecting computers and terminals to ensure the orderly transfer of
information. The purpose of a data link protocol is to establish and terminate a connection
between two stations, to identify the sender and receiver, to ensure that all messages are passed
correctly without errors, and to handle all control functions involved in a sequence of data
transfers.

Downloaded from CSIT Tutor

24 | P a g e b i i z a y @ g m a i l . c o m

References:
1. J. P. Hayes, “Computer Architecture and Organization”, McGraw Hill, 3rd Ed, 1998.
2. M. Morris Mano, “Computer System Architecture”, Pearson, 3rd Ed, 2004.
3. M. Morris Mano, “Digital Design”, Pearson Education, Third Edition
4. M. Morris Mano, “Logic and Computer Design Fundamentals”, Pearson Education, 2nd Edition

Assignments:
(1) What is Handshaking? What advantage it has over strobe control?
(2) Describe strobe control in Asynchronous Data transfer.
(3) What are the different modes of data transfer to and from peripherals?
(4) Draw the flowchart for CPU program to input data and explain it.
(5) What is the need of Priority interrupt?
(6) Discuss the need of Direct Memory Access.
(7) Why does DMA have priority over the CPU when both request a memory transfer?
(8) What are the major differences between I/O bus and interface modules? What are the

advantage and disadvantage of each? (T.U. 2066, 2070)
(9) What is the main function of DMA? Mention the three points DMA configurations. (T.U. 2066)
(10) What are the different types of I/O commands? Explain. (T.U. 2066)
(11) What are the three possible modes to transfer the data to and from peripherals? Explain.

(T.U. 2066)
(12) What is the role of input-output processor (IOP) in computer system? Explain. (T.U. 2067)
(13) What is DMA transfer? Explain. (T.U. 2067)
(14) Differentiate between isolated I/O and memory mapped I/O. (T.U. 2067, 2068)
(15) Explain the I/O processor with block diagram. (T.U. 2068)
(16) What do you mean by I/O interface? Explain the I/O bus and Interface module. (T.U. 2068)
(17) What do you mean by DMA controller? What are the three registers used in DMA controller?

Explain. (T.U. 2069)
(18) What do you mean by interface? What are the major differences between I/O bus and

memory bus? (T.U. 2069)
(19) What is input-output processor (IOP)? Why IOP is needed in a computer system? Explain.

(T.U. 2070)
(20) Explain the DMA controller with block diagram. How the DMA interacts with I/O devices?

Explain. (T.U. 2070)
(21) What are the different type of I/O techniques? Explain. (T.U. 2070)
(22) Differentiate between IOP and DMA. (T.U. 2070)
(23) Write short notes on the following:

(a) DMA (T.U. 2070)

A Gentle Advice:
Please go through your text books and reference books for detail study!!! Thank you all.

Notes Compiled By:
Bijay Mishra
biizay.blogspot.com
9813911076 or 9841695609

Downloaded from CSIT Tutor

1 | P a g e b i i z a y @ g m a i l . c o m

Unit 8 - Memory Organization

Memory Hierarchy
Memory in a computer system is required for storage and subsequent retrieval of the instructions
and data. A computer system uses a variety of devices for storing these instructions and data that
are required for its operation.

Memory hierarchy is to obtain the highest possible access speed while minimizing the total cost of
the memory system. The memory hierarchy system consists of all storage devices employed in a
computer system from the slow but high capacity auxiliary memory to a relatively faster main
memory, to an even smaller and faster cache memory accessible to the high speed registers and
processing logic.

The various components are:
Cache Memory: This is the memory which lies in between main memory and CPU. The cache holds
those parts of the program and data that are most heavily used

Main Memory: The memory unit that communicates directly with CPU. The programs and data
currently needed by the processor reside in main memory (RAM and ROM). It is known as primary
memory.

Auxiliary Memory: This is made of devices that provide backup storage. Example: Magnetic tapes,
magnetic disks etc. On-line, direct-access secondary storage devices such as magnetic hard disks
make up the level of hierarchy just below the main memory. Off-line, direct-access and sequential
access secondary storage devices such as magnetic tape, floppy disk, zip disk, WORM disk, etc. fall
next in the storage hierarchy. Mass storage devices, often referred to as archival storage, are at
the bottom of the storage hierarchy.

Memory Organization 6 Hrs.
Hierarchy of Memory System 1 Hr.
Types of Memory, Sequential, Random, Memory Hierarchy

Primary and Secondary Memory 1.5 Hr.
Primary memory – RAM, ROM, Bootstrap Loader, RAM and ROM Chips, Memory Address Map,
Memory-CPU Connection
Auxiliary Memory – Types, Magnetic (Tape, Disk), Optical, Semiconductor

Virtual Memory 2.5 Hr.
Introduction, Address Space, Memory Space, Address Mapping using Pages, Associative Page
Table, Page Replacement

Memory management hardware 1 Hr.
Introduction, Segmented Page Mapping, Memory protection

Downloaded from CSIT Tutor

2 | P a g e b i i z a y @ g m a i l . c o m

Figure: Memory Hierarchy

In this hierarchy, we have magnetic tapes at the lowest level which means they are very slow and
very cheap in nature. Moving on to upper levels, we have main memory in which we get increased
speed but with increased cost per bit.

Thus we can conclude as we go towards upper levels:
- Price increases
- Speed increases
- Cost per bit increases
- Access time decreases
- Size decreases

Downloaded from CSIT Tutor

3 | P a g e b i i z a y @ g m a i l . c o m

Figure: Memory Hierarchy in a computer system

At the bottom of the hierarchy are the relatively slow magnetic tapes used to store removable
files. Next are the magnetic disks which are used as backup storage. The main memory occupies a
central position by being able to communicate directly with the CPU and with auxiliary memory
devices through an I/O processor. When programs not residing in main memory are needed by the
CPU, they are brought in from auxiliary memory. Programs not currently needed in main memory
are transferred into auxiliary memory to provide space for currently used programs and data.

A special very-high speed memory called a cache is sometimes used to increase the speed of
processing by making current programs and data available to the CPU at a rapid rate. The cache
memory is employed in computer systems to compensate for the speed differential between main
memory access time and processor logic. CPU logic is usually faster than main memory access
time, with the result that processing speed is limited primarily by the speed of main memory. A
technique used to compensate for the mismatch in operating speeds is to employ in extremely
fast, small cache between the CPU and main memory whose access time is close to processor logic
clock cycle time. The cache is used for storing segments of programs currently being executed in
the CPU and temporary data frequently needed in the present calculations by making programs
and data available at a rapid rate, it is possible to increase the performance rate of the computer.

While the I/O processor manages data transfers between auxiliary memory and main memory, the
cache organization is concerned with the transfer of information between main memory and CPU.
Thus each is involved with a different level in the memory hierarchy system. The reason for having
two or three levels of memory hierarchy is economics. As the storage capacity of the memory
increases, the cost per bit for storing binary information decreases and the access time of the
memory becomes longer. The auxiliary memory has a large storage capacity, is relatively
inexpensive, but has low access speed compared to main memory. The cache memory is very
small, relatively expensive, and has very high access speed. Thus as the memory access speed
increases, so does its relative cost. The overall goal of using a memory hierarchy is to obtain the
highest-possible average access speed while minimizing the total cost of the entire memory
system.

Downloaded from CSIT Tutor

4 | P a g e b i i z a y @ g m a i l . c o m

Auxiliary and cache memories are used for different purposes. The cache holds those parts of the
program and data that are most heavily used, while the auxiliary memory holds those parts that
are not presently used by the CPU. Moreover, the CPU has direct access to both cache and main
memory but not to auxiliary memory. The transfer from auxiliary to main memory is usually done
by means of direct memory access of large blocks of data. The typical access time ratio between
cache and main memory is about 1 to 7. For example, a typical cache memory may have an access
time of 100ns, while main memory access time may be 700ns. Auxiliary memory average access
time is usually 1000 times that of main memory. Block size in auxiliary memory typically ranges
from 256 to 2048 words, while cache block size is typically from 1 to 16 words.

Many operating systems are designed to enable the CPU to process a number of independent
programs concurrently. This concept, called multiprogramming, refers to the existence of two or
more programs indifferent parts of the memory hierarchy at the same time. In this way it is
possible to keep all parts of the computer busy by working with several programs in sequence. For
example, suppose that a program is being executed in the CPU and an I/O transfer is required. The
CPU initiates the I/O processor to start executing the transfer. This leaves the CPU free to execute
another program. In a multiprogramming system, when one program is waiting for input or output
transfer, there is another program ready to utilize the CPU.

Computer programs are sometimes too long to be accommodated in the total space available in
main memory. Moreover, a computer system uses many programs and all the programs cannot
reside in main memory at all times. A program with its data normally resides in auxiliary memory.
When the program or a segment of the program is to be executed, it is transferred to main
memory to be executed by the CPU. Thus one may think of auxiliary memory as containing the
totality of information stored in a computer system. It is the task of the operating system to
maintain in main memory a portion of this information that is currently active. The part of the
computer system that supervises the flow of information between auxiliary memory and main
memory is called the memory management system.

Main Memory
The main memory is the central storage unit in a computer system. It is a relatively large and fast
memory used to store programs and data during the computer operation. The principal
technology used for the main memory is based on semiconductor integrated circuits. Integrated
circuit RAM chips are available in two possible operating modes: static and dynamic.

The Static RAM consists essentially of internal flip-flops that store the binary information. The
stored information remains valid as long as power is applied to the unit.

The Dynamic RAM stores the binary information in the form of electric charges that are applied to
capacitors. The capacitors are provided inside the chip by MOS transistors. The stored charge on
the capacitors tends to discharge with time and the capacitors must be periodically recharged by
refreshing the dynamic memory. Refreshing is done by cycling through the words every few
milliseconds to restore the decaying charge. The dynamic RAM offers reduced power consumption
and larger storage capacity in a single memory chip. The static RAM is easier to use and has
shorter read and write cycles.

Downloaded from CSIT Tutor

5 | P a g e b i i z a y @ g m a i l . c o m

RAM and ROM Chips
RAM and ROM chips are available in a variety of sizes. If the memory needed for the computer is
larger than the capacity of one chip, it is necessary to combine a number of chips to form the
required memory size. A RAM chip is better suited for communication with the CPU if it has one or
more control inputs that select the chip only when needed. Another common bidirectional bus
feature is a bidirectional data bus that allows the transfer of data either from memory to CPU
during a read operation or from CPU to memory during a write operation.

To demonstrate the chip interconnection, we will show an example of a 1024 × 8 memory
constructed with 128 × 8 RAM chips and 512 × 8 ROM chips. A RAM chip is better suited for
communication with the CPU if it has one or more control inputs that select the chip only when
needed. Another common feature is a bidirectional data bus that allows the transfer of data either
from memory to CPU during a read operation or from CPU to memory during a write operation. A
bidirectional bus can be constructed with three-state buffers. A three-state buffer output can be
placed in one of three possible states: a signal equivalent to logic 1, a signal equivalent to logic 0,
or a high-impedance state. The logic 1 and 0 are normal digital signals. The high-impedance state
behaves like an open circuit, which means that the output does not carry a signal and has no logic
significance.

Downloaded from CSIT Tutor

6 | P a g e b i i z a y @ g m a i l . c o m

The figure below shows the typical RAM chip with the capacity of the memory 128 words of eight
bits (one byte) per word.

Figure: Block Diagram of RAM

This requires a 7-bit address and an 8-bit bidirectional data bus. The read and write inputs specify
the memory operation and the two chips select (CS) control inputs are for enabling the chip only
when it is selected by the microprocessor. The availability of more than one control input to select
the chip facilitates the decoding of the address lines when multiple chips are used in the
microcomputer. The read and write inputs are sometimes combined into one line labeled R/W.
When the chip is selected, the two binary states in this line specify the two operations or read or
write.

Figure: Function Table

A ROM chip is organized externally in a similar manner. However, since a ROM can only read, the
data bus can only be in an output mode. The block diagram of a ROM chip is shown in the figure
below.

Figure: Typical ROM chip

Downloaded from CSIT Tutor

7 | P a g e b i i z a y @ g m a i l . c o m

For the same-size chip, it is possible to have more bits of ROM than of RAM, because the internal
binary cells in ROM occupy less space than in RAM. For this reason, the diagram specifies a 512-
byte ROM, while the RAM has only 128 bytes. The nine address lines in the ROM chip specify any
one of the 512 bytes stored in it. The two chip select inputs must be CS1 = 1 and CS2 = 0 for the
unit to operate. Otherwise, the data bus is in a high-impedance state. There is no need for a read
or write control because the unit can only read. Thus when the chip is enabled by the two select
inputs, the byte selected by the address lines appears on the data bus.

Memory Address Map
The designer of a computer system must calculate the amount of memory required for the
particular application and assign it to either RAM or ROM. The interconnection between memory
and processor is then established from knowledge of the size of memory needed and the type of
RAM and ROM chips available. The addressing of memory can be established by means of a table
that specifies the memory address assigned to each chip. The table, called a memory address
map, is a pictorial representation of assigned address space for each chip in the system.

To demonstrate with a particular example, assume that a computer system needs 512 bytes of
RAM and 512 bytes of ROM. The component column specifies whether a RAM or a ROM chip is
used. The hexadecimal address column assigns a range of hexadecimal equivalent addresses for
each chip. The address bus lines are listed in the third column. Although there are 16 lines in the
address bus, the table shows only 10 lines because the other 6 are not used in this example and
are assumed to be zero. The small x’s under the address bus lines designate those lines that must
be connected to the address inputs in each chip.

The RAM chips have 128 bytes and need seven address lines. The ROM chip has 512 bytes and
needs 9 address lines. The x’s are always assigned to the low-order bus lines: lines 1 through 7 for
the RAM and lines 1 through 9 for the ROM. It is now necessary to distinguish between four RAM
chips by assigning to each a different address. For this particular example we choose bus lines 8
and 9 to represent four distinct binary combinations. Note that any other pair of unused bus lines
can be chosen for this purpose.

The table clearly shows that the nine low-order bus lines constitute a memory space for RAM
equal to 29 = 512 bytes. The distinction between a RAM and ROM address is done with another
bus line. Here we choose line 10 for this purpose. When line 10 is 0, the CPU selects a RAM, and
when this line is equal to 1, it selects the ROM.

Downloaded from CSIT Tutor

8 | P a g e b i i z a y @ g m a i l . c o m

The equivalent hexadecimal address for each chip is obtained from the information under the
address bus assignment. The address bus lines are subdivided into groups of four bits each so that
each group can be represented with a hexadecimal digit. The first hexadecimal digit represents
lines 13 to 16 and is always 0. The next hexadecimal digit represents lines 9 to 12, but lines 11 and
12 are always 0. The range of hexadecimal addresses for each component is determined from the
x’s associated with it. These x’s represent a binary number that can range from an all-0’s to an all-
1’s value.

Memory Connection to CPU
RAM and ROM chips are connected to a CPU through the data and address buses. The low-order
lines in the address bus select the byte within the chips and other lines in the address bus select a
particular chip through its chip select inputs.

Figure: Memory Connection to the CPU

Downloaded from CSIT Tutor

9 | P a g e b i i z a y @ g m a i l . c o m

The connection of memory chips to the CPU is shown in the figure below. This configuration gives
a memory capacity of 512 bytes of RAM and 512 bytes of ROM. Each RAM receives the seven low
order bits of the address bus to select one of 128 possible bytes. The particular RAM chip selected
is determined from lines 8 and 9 in the address bus. This is done through a 2 × 4 decoder whose
outputs go to the SCI input in each RAM chip. Thus, when address lines 8 and 9 are equal to 00,
the first RAM chip is selected. When 01, the second RAM chip is selected, and so on. The RD and
WR outputs from the microprocessor are applied to the inputs of each RAM chip.

The selection between RAM and ROM is achieved through bus line 10. The RAMs are selected
when the bit in this line is 0, and the ROM when the bit is 1. The other chip select input in the
ROM is connected to the RD control line for the ROM chip to be enabled only during a read
operation. Address bus lines 1 to 9 are applied to the input address of ROM without going through
the decoder. This assigns addresses 0 to 511 to RAM and 512 to 1023 to ROM. The data bus of the
ROM has only an output capability, whereas the data bus connected to the RAMs can transfer
information in both directions.

Auxiliary Memory
The most common auxiliary memory devices used in computer systems are magnetic disks and
tapes. Other components used, but not as frequently, are magnetic drums, magnetic bubble
memory, and optical disks. To understand fully the physical mechanism of auxiliary memory
devices one must have a knowledge of magnetics, electronics, and electromechanical systems.
Although the physical properties of these storage devices can be quite complex, their logical
properties can be characterized and compared by a few parameters. The important characteristics
of any device are its access mode, access time, transfer rate, capacity, and cost.

Magnetic Disks
A magnetic disk is a circular plate constructed of metal or plastic coated with magnetized material.
Often both sides of the disk are used and several disks may be stacked on one spindle with
read/write heads available on each surface. All disks rotate together at high speed and are not
stopped or started for access purposes. Bits are stored in the magnetized surface in spots along
concentric circles called tracks. The tracks are commonly divided into sections called sectors. In
most systems, the minimum quantity of information which can be transferred is a sector.

Figure: Magnetic Disk

Downloaded from CSIT Tutor

10 | P a g e b i i z a y @ g m a i l . c o m

A track in a given sector near the circumference is longer than a track near the center of the disk.
If bits are recorded with equal density, some tracks will contain more recorded bits than others.
To make all the records in a sector of equal length, some disks use a variable recording density
with higher density on tracks near the center than on tracks near the circumference. This equalizes
the number of bits on all tracks of a given sector.

Magnetic Tape
A magnetic tape transport consists of the electrical, mechanical, and electronic components to
provide the parts and control mechanism for a magnetic-tape unit. The tape itself is a strip of
plastic coated with a magnetic recording medium. Bits are recorded as magnetic spots on the tape
along several tracks. Usually, seven or nine bits are recorded simultaneously to form a character
together with a parity bit. Read/write heads are mounted one in each track so that data can be
recorded and read as a sequence of characters. Magnetic tape units can be stopped, started to
move forward or in reverse, or can be rewound. However, they cannot be started or stopped fast
enough between individual characters.

Associative Memory
The time required to find an item stored in memory can be reduced considerably if stored data
can be identified for access by the content of the data itself rather than by an address. A memory
unit accessed by content is called an associative memory or content addressable memory (CAM).
This type of memory is accessed simultaneously and in parallel on the basis of data content rather
than by specific address or location. When a word is written in an associative memory, no address
is given. The memory is capable of finding an empty unused location to store the word. When a
word is to be read from an associative memory, the content of the word, or part of the word, is
specified. The memory locates all words which match the specified content and marks them for
reading.

Figure: Block diagram of associative memory

Downloaded from CSIT Tutor

11 | P a g e b i i z a y @ g m a i l . c o m

To illustrate with a numerical example, suppose that the argument register A and the key register
K have the bit configuration shown below. Only the three leftmost bits of A are compared with
memory words because K has 1’s in these positions.

Word 2 matches the unmasked argument field because the three leftmost bits of the argument
and the word are equal. The relation between the memory array and external registers in an
associative memory is shown in the figure below.

Figure: Associative memory of m words, n cells per word

The cells in the array are marked by the letter C with two subscripts. The first subscript gives the
word number and the second specifies the bit position in the word. Thus cell Cij is the cell for bit j
in word i. A bit Aj in the argument register is compared with all the bits in column j of the array
provided that Kj = 1. This is done for all columns j = 1, 2,…,n. If a match occurs between all the
unmasked bits of the argument and the bits in word i, the corresponding bit Mi in the match
register is set to 1. If one or more unmasked bits of the argument and the word do not match, Mi
is cleared to 0.

Downloaded from CSIT Tutor

12 | P a g e b i i z a y @ g m a i l . c o m

Cache Memory
Cache memory is a small (in size) and very fast (zero wait state) memory which sits between the
CPU and main memory. Unlike normal memory, the bytes appearing within a cache do not have
fixed addresses. Instead, cache memory can reassign the address of a data object. This allows the
system to keep recently accessed values in the cache.

When a program executes on a computer, most of the memory references are not made uniformly
to a small number of locations. Here the Locality of the reference does matter. Locality of
Reference, also known as the Principle of Locality, the phenomenon of the same value or related
storage locations being frequently accessed. Locality occurs in time (temporal locality) and in
space (spatial locality).

Temporal Locality refers to the reuse of specific data and/or resources within relatively small time
durations. Spatial Locality refers to the use of data elements within relatively close storage
locations. Sequential locality, a special case of spatial locality, occurs when data elements are
arranged and accessed linearly. Example: traversing the elements in a one-dimensional array.

When a program loop is executed, the CPU repeatedly refers to the set of instructions in memory
that constitute the loop. Every time a given subroutine is called, their sets of instructions are
fetched from memory. Thus loops and subroutines tend to localize the references to memory for
fetching instructions. To a lesser degree, memory references to data also tend to be localized.
Table-lookup procedures repeatedly refer to that portion in memory where the table is stored.
Iterative procedures refer to common memory locations and array of numbers are confined within
a local portion of memory.

If the active portions of the program and data are placed in a fast small memory, the average
memory access time can be reduced, thus reducing the total execution time of the program. Such
a fast small memory is referred to as a cache memory. It is placed between the CPU and main
memory as illustrated in figure below.

Figure: Example of Cache Memory

The performance of cache memory is frequently measured in terms of a quantity called hit ratio.
When the CPU refers to memory and finds the word in cache, it is said to produce a hit. If the
word is not found in cache, it is in main memory and it counts as a miss. The ratio of the number
of hits divided by the total CPU references to memory (hits plus misses) is the hit ratio.

The hit ratio is best measured experimentally by running representative programs in the computer
and measuring the number of hits and misses during a given interval of time. Hit ratios of 0.9 and
higher have been reported. This high ratio verifies the validity of the locality of reference property.

Downloaded from CSIT Tutor

13 | P a g e b i i z a y @ g m a i l . c o m

The transformation of data from main memory to cache memory is referred to as a mapping
process. Three types of mapping procedures are of practical interest when considering the
organization of cache memory:
1. Direct mapping
2. Fully-Associative mapping
3. Set-Associative mapping

1. Direct Mapping
The simplest technique, known as direct mapping, maps each block of main memory into only one
possible cache line. A direct mapped cache could be described as "one-way set associative", i.e.
one location in each set.

Direct mapping does not have a replacement policy as such, since there is no choice of which
cache entry's contents to evict. This means that if two locations map to the same entry, they may
continually knock each other out. Although simpler, a direct-mapped cache needs to be much
larger than an associative one to give comparable performance, and is more unpredictable.

Inorder to determine to which Cache line a main memory block is mapped we can use the formula
shown below:

Cache Line Number = (Main memory Block number) MOD (Number of Cache lines)

The direct mapping technique is simple and inexpensive to implement. One of the advantages of a
direct mapped cache is that it allows simple and fast speculation. Once the address has been
computed, the one cache index which might have a copy of that location in memory is known.
That cache entry can be read, and the processor can continue to work with that data before it
finishes checking that the tag actually matches the requested address.

Downloaded from CSIT Tutor

14 | P a g e b i i z a y @ g m a i l . c o m

Its main disadvantage is that there is a fixed cache location for any given block. Different blocks
that map into the same line, then the blocks will be continually swapped in the cache, and the hit
ratio will be low.

2. Fully-Associative Mapping:
If each location in main memory can be cached in either of two locations in the cache, one logical
question is: which one of the two? The simplest and most commonly used scheme is fully-
associative mapping. If a main memory block can be placed in any of the cache slots, then the
cache is said to be mapped in fully associative. A fully associative cache is N-way associative
(where N is the total number of blocks in the cache).

It overcomes the disadvantage of direct mapping by permitting each main memory block to be
loaded into any line of the cache. One benefit of this scheme is that the tags stored in the cache
do not have to include that part of the main memory address which is implied by the cache
memory's index. Since the cache tags have fewer bits, they take less area on the microprocessor
chip and can be read and compared faster.

In full-associative mapping:
• A main memory block can load into any line of cache
• Memory address is interpreted as tag and word
• Tag uniquely identifies block of memory
• Every line’s tag is examined for a match
• Cache searching gets expensive

Downloaded from CSIT Tutor

15 | P a g e b i i z a y @ g m a i l . c o m

With full-associative mapping, there is flexibility as to which block to replace when a new block is
read into the cache. The whole address must be used as the tag. All tags must be compared
simultaneously (associatively) with the requested address and if one matches then its associated
data is accessed. This requires an associative memory to hold the tags which makes this form of
cache more expensive.

3. Set-associative Mapping
A set-associative scheme is a hybrid between a fully associative cache, and direct mapped cache. It
combines the simplicity of direct mapping with the flexibility of fully associative mapping. The slots
are grouped into sets. We find the appropriate set for a given address (which is like the direct
mapped scheme), and within the set we find the appropriate slot (which is like the fully associative
scheme).

In this mapping mechanism, the cache memory is divided into 'v' sets, each consisting of 'n' cache
lines. A block from main memory is first mapped onto a specific cache set, and then it can be
placed anywhere within that set. This type of mapping has very efficient ratio between
implementation and efficiency.

The set is usually chosen by:

Cache set number = (Main memory block number) MOD (Number of sets in the cache memory)

If there are 'n' cache lines in a set, the cache placement is called n-way set associative i.e. if there
are two blocks or cache lines per set, then it is a 2-way set associative cache mapping and four
blocks or cache lines per set, then it is a 4-way set associative cache mapping.

Writing into Cache
The simplest and most commonly used procedure is to update main memory with every memory
write operation, with cache memory being updated in parallel if it contains the word at the
specified address. This is called the write-through method.

Advantage of write-through:
1. READ miss never results in writes to main memory.
2. Easy to implement
3. Main Memory always has the most current copy of the data (consistent)

Disadvantage of write-through:
1. WRITE operation is slower as we have to update both Main Memory and Cache Memory.
2. Every write needs a main memory access as a result uses more memory bandwidth

The second procedure is called the write-back method. In this method only the cache location is
updated during a write operation. The location is then marked by a flag so that later when the
word is removed from the cache it is copied into main memory. The reason for the write-back
method is that during the time a word resides in the cache, it may be updated several times;
however, as long as the word remains in the cache, it does not matter whether the copy in main
memory is out of date, since requests from the word are filled from the cache.

Downloaded from CSIT Tutor

16 | P a g e b i i z a y @ g m a i l . c o m

Advantage of write-back:
1. WRITE’s occur at the speed of the cache memory.
2. Multiple WRITE’s within a block require only one WRITE to main memory as a result uses less
memory bandwidth

Disadvantage of write-back:
1. Harder to implement
2. Main Memory is not always consistent with cache reads that result in replacement may cause
writes of dirty blocks to main memory.

Cache Initialization
One more aspect of cache organization that must be taken into consideration is the problem of
initialization. The cache is initialized when power is applied to the computer or when the main
memory is loaded with a complete set of programs from auxiliary memory. After initialization the
cache is considered to be empty, but in effect it contains some non-valid data. It is customary to
valid bit include with each word in cache a valid bit to indicate whether or not the word contains
valid data.

Virtual Memory
In a memory hierarchy system, programs and data are first stored in auxiliary memory. Portions of
a program or data are brought into main memory as they are needed by the CPU. Virtual memory
is a concept used in some large computer systems that permit the user to construct programs as
though a large memory space were available, equal to the totality of auxiliary memory. Each
address that is referenced by the CPU goes through an address mapping from virtual address to a
physical address in main memory. Virtual memory is used to give programmers the illusion that
they have a very large memory at their disposal, even though the computer actually has a
relatively small main memory. A virtual memory system provides a mechanism for translating
program-generated addresses into correct main memory locations. This is done dynamically, while
programs are being executed in the CPU. The translation or mapping is handled automatically by
the hardware by means of a mapping table.

Address Space and Memory Space
An address used by a programmer will be called a virtual address, and the set of such addresses
the address space. An address in main memory is called a location or physical address. The set of
such locations is called the memory space. Thus the address space is the set of addresses
generated by programs as they reference instructions and data; the memory space consists of the
actual main memory locations directly addressable for processing. In most computers the address
and memory spaces are identical. The address space is allowed to be larger than the memory
space in computers with virtual memory.

As an illustration, consider a computer with a main-memory capacity of 32K words (K =1024).
Fifteen bits are needed to specify a physical address in memory since 32K = 215. Suppose that the
computer has available auxiliary memory for storing 220 = 1024K words. Thus auxiliary memory has
a capacity for storing information equivalent to the capacity of 32 main memories. Denoting the
address space by N and the memory space by M, we then have for this example N = 1024K and M
= 32K.

Downloaded from CSIT Tutor

17 | P a g e b i i z a y @ g m a i l . c o m

Figure: Relation between address and memory space in a virtual memory system

A table is needed, as shown in figure below to map a virtual address of 20 bits to a physical
address of 15 bits. The mapping is a dynamic operation, which means that every address is
translated immediately as a word is referenced by CPU. The mapping table may be stored in a
separate memory or in main memory. In the first case, an additional memory unit is required as
well as one extra memory access time. In the second case, the table takes space from main
memory and two accesses to memory are required with the program running at half speed.

Figure: Memory table for mapping a virtual address

Downloaded from CSIT Tutor

18 | P a g e b i i z a y @ g m a i l . c o m

Address Mapping Using Pages
The table implementation of the address mapping is simplified if the information in the address
space and the memory space are each divided into groups of fixed size. The physical memory is
broken down into groups of equal size called blocks, which may range from 64 to 4096 words
each. The term page refers to groups of address space of the same size. For example, if a page or
block consists of 1K words, then, using the previous example, address space is divided into 1024
pages and main memory is divided into 32 blocks. Although both a page and a block are split into
groups of 1K words, a page refers to the organization of address space, while a block refers to the
organization of memory space. The programs are also considered to be split into pages. Portions
of programs are moved from auxiliary memory to main memory in records equal to the size of a
page. The term “page frame” is sometimes used to denote a block.

Figure: Address space and Memory space split into groups of 1K words

Consider a computer with an address space of 8K and a memory space of 4K. If we split each into
groups of 1K words we obtain eight pages and four blocks as shown in figure above. At any given
time, up to four pages of address space may reside in main memory in any one of the four blocks.

The mapping from address space to memory space is facilitated if each virtual address is
considered to be represented by two numbers: a page number address and a line within the page.
In a computer with 2p words per page, p bits are used to specify a line address and the remaining
high-order bits of the virtual address specify the page number. In the example of figure below, a
virtual address has 13 bits. Since each page consists of 210 = 1024 words, the high-order three bits
of a virtual address will specify one of the eight pages and the low-order 10 bits give the line
address within the page. Note that the line address in address space and memory space is the
same; the only mapping required is from a page number to a block number.

The organization of the memory mapping table in a paged system is shown in figure below. The
memory-page table consists of eight words, one for each page. The address in the page table
denotes the page number and the content of the word gives the block number where that page is
stored in main memory.

Downloaded from CSIT Tutor

19 | P a g e b i i z a y @ g m a i l . c o m

Figure: Memory table in a paged system

The table shows that pages 1, 2, 5 and 6 are now available in main memory in blocks 3, 0, 1, and 2,
respectively. A presence bit in each location indicates whether the page has been transferred from
auxiliary memory into main memory. A 0 in the presence bit indicates that this page is not
available in main memory. The CPU references a word in memory with a virtual address of 13 bits.
The three high-order bits of the virtual address specify a page number and also an address for the
memory-page table.

The content of the word in the memory page table at the page number address is read out into
the memory table buffer register. If the presence bit is a 1, the block number thus read is
transferred to the two high-order bits of the main memory address register. The line number from
the virtual address is transferred into the 10 low order bits of the memory address register. A read
signal to main memory transfers the content of the word to the main memory buffer register
ready to be used by the CPU. If the presence bit in the word read from the page table is 0, it
signifies that the content of the word referenced by the virtual address does not reside in main
memory. A call to the operating system is then generated to fetch the required page from auxiliary
memory and place it into main memory before resuming computation.

Associative Memory Page Table
Consider an address space of 1024K words and memory space of 32K words. If each page or block
contains 1K words, the number of pages is 1024 and the number of blocks 32. The capacity of the
memory-page table must be 1024 words and only 32 locations may have a presence bit equal to 1.
At any given time, at least 992 locations will be empty and not in use.

Downloaded from CSIT Tutor

20 | P a g e b i i z a y @ g m a i l . c o m

Figure: An Associative memory page table

A more efficient way to organize the page table would be to construct it with a number of words
equal to the number of blocks in main memory. In this way the size of the memory is reduced and
each location is fully utilized. This method can be implemented by means of an associative
memory with each word in memory containing a page number together with its corresponding
block number. The page field in each word is compared with the page number in the virtual
address. If a match occurs, the word is read from memory and its corresponding block number is
extracted.

Each entry in the associative memory array consists of two fields. The first three bits specify a field
for storing the page number. The last two bits constitute a field for storing the block number. The
virtual address is placed in the argument register. The page number bits in the argument are
compared with all page numbers in the page field of the associative memory. If the page number
is found, the 5-bit word is read out from memory. The corresponding block number, being in the
same word, is transferred to the main memory address register. If no match occurs, a call to the
operating system is generated to bring the required page from auxiliary memory.

Page Replacement
A virtual memory system is a combination of hardware and software techniques. The memory
management software system handles all the software operations for the efficient utilization of
memory space. It must decide:
(1) Which page in main memory ought to be removed to make room for a new page?
(2) When a new page is to be transferred from auxiliary memory to main memory?
(3) Where the page is to be placed in main memory?

The hardware mapping mechanism and the memory management software together constitute
the architecture of a virtual memory. When a program starts execution, one or more pages are
transferred into main memory and the page table is set to indicate their position. The program is
executed from main memory until it attempts to reference a page that is still page fault in auxiliary

Downloaded from CSIT Tutor

21 | P a g e b i i z a y @ g m a i l . c o m

memory. This condition is called page fault. When page fault occurs, the execution of the present
program is suspended until the required page is brought into main memory. Since loading a page
from auxiliary memory to main memory is basically an I/O operation, the operating system assigns
this task to the I/O processor. In the meantime, control is transferred to the next program in
memory that is waiting to be processed in the CPU. Later, when the memory block has been
assigned and the transfer completed, the original program can resume its operation.

The goal of a replacement policy is to try to remove the page least likely to be referenced in the
immediate future. Two of the most common replacement algorithms used is the first-in first-out
(FIFO) and the least recently used (LRU). The FIFO algorithm selects for replacement the page that
has been in memory the longest time. Each time a page is loaded into memory, its identification
number is pushed into a FIFO stack. FIFO will be full whenever memory has no more empty blocks.
When a new page must be loaded, the page least recently brought in is removed. The page to be
removed is easily determined because its identification number is at the top of the FIFO stack. The
FIFO replacement policy has the advantage of being easy to implement. It has the disadvantage
that under certain circumstances pages are removed and loaded from memory too frequently.

The LRU policy is more difficult to implement but has been more attractive on the assumption that
the least recently used page is a better candidate for removal than the least recently loaded page
as in FIFO. The LRU algorithm can be implemented by associating a counter with every page that is
in main memory. When a page is referenced, its associated counter is set to zero. At fixed intervals
of time, the counters associated with all pages presently in memory are incremented by 1. The
least recently used page is the page with the highest count. The counters are often called aging
registers, as their count indicates their age, that is, how long ago their associated pages have been
referenced.

Memory Management Hardware
A memory management system is a collection of hardware and software procedures for managing
the various programs residing in memory. The memory management software is part of an overall
operating system available in many computers. Here we are concerned with the hardware unit
associated with the memory management system.

The basic components of a memory management unit are:

1. A facility for dynamic storage relocation that maps logical memory references into physical
memory addresses

2. A provision for sharing common programs stored in memory by different users
3. Protection of information against unauthorized access between users and preventing users

from changing operating system functions

The fixed page size used in the virtual memory system causes certain difficulties with respect to
program size and the logical structure of programs. It is more convenient to divide programs and
segment data into logical parts called segments. A segment is a set of logically related instructions
or data elements associated with a given name. Segments may be generated by the programmer
or by the operating system. Examples of segments are a subroutine, an array of data, a table of
symbols, or a user's program.

Downloaded from CSIT Tutor

22 | P a g e b i i z a y @ g m a i l . c o m

Segmented Page Mapping
The length of each segment is allowed to grow and contract according to the needs of the
program being executed. One way of specifying the length of a segment is by associating with it a
number of equal-size pages. The logical address is partitioned into three fields. The segment field
specifies a segment number. The page field specifies the page within the segment and the word
field gives the specific word within the page. A page field of k bits can specify up to 2k pages.

Figure: Logical to Physical Address Mapping

Memory Protection
Memory protection can be assigned to the physical address or the logical address. The protection
of memory through the physical address can be done by assigning to each block in memory a
number of protection bits that indicate the type of access allowed to its corresponding block.
Every time a page is moved from one block to another it would be necessary to update the block
protection bits. A much better place to apply protection is in the logical address space rather than
the physical address space. This can be done by including protection information within the
segment table or segment register of the memory management hardware.

The protection field in a segment descriptor specifies the access rights available to the particular
segment. In a segmented-page organization, each entry in the page table may have its own
protection field to describe the access rights of each page. The protection information is set into
the descriptor by the master control program of the operating system.

Some of the access rights of interest that are used for protecting the programs residing in memory
are:
1. Full read and write privileges
2. Read only (write protection)
3. Execute only (program protection)
4. System only (operating system protection)

Downloaded from CSIT Tutor

23 | P a g e b i i z a y @ g m a i l . c o m

Full read and write privileges are given to a program when it is executing its own instructions.
Write protection is useful for sharing system programs such as utility programs and other library
routines. These system programs are stored in an area of memory where they can be shared by
many users. They can be read by all programs, but no writing is allowed. This protects them from
being changed by other programs.

References:
1. M. Morris Mano, “Computer System Architecture”, Pearson, 3rd Ed, 2004.
2. W. Stallings, “Computer Organization and Architecture – Designing for Performance”, Prentice

Hall of India, 7th Ed, 2007

Assignments:
(1) Explain the memory hierarchy in the computer systems.
(2) What is memory address mapping? Explain the concept with the help of ROM chips.
(3) What is the concept of Associative memory? Explain.
(4) What is cache memory? How it is fast as compared to conventional memory?
(5) What is the concept of page replacement?
(6) Differentiate between associative page table and replacement. (T.U. 2066)
(7) What is memory management hardware? Explain. (T.U. 2067)
(8) What do you mean by memory mapping? Explain. (T.U. 2068)
(9) What do you mean by memory organization? Explain the memory management hardware with

example. (T.U. 2068)
(10) What do you mean by memory system? Explain the characteristics of memory systems of

computer. (T.U. 2069)
(11) What is virtual memory? What are the major differences between address space and memory

space? (T.U. 2069)
(12) What are the key characteristics of computer memory system? Explain. (T.U. 2070)
(13) What is the main role of memory management hardware? Explain. (T.U. 2070)
(14) Write short notes on the following:
 a. Memory space (T.U. 2066)
 b. Address space (T.U. 2066)
 c. Sequential memory hierarchy (T.U. 2067)
 d. Random memory hierarchy (T.U. 2067)
 e. Memory Protection (T.U. 2070)
 f. Address Mapping (T.U. 2070)

A Gentle Advice:
Please go through your text books and reference books for detail study!!! Thank you all.

Notes Compiled By:
Bijay Mishra
biizay.blogspot.com
9813911076 or 9841695609

Downloaded from CSIT Tutor

